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Abstract
The Bayes-Stein model provides a framework for remedying parameter uncertainty in
the Markowitz mean-variance portfolio optimization. The classical version, however,
suffers from estimation errors of model components and fails to consistently outperform
the naive 1/N asset allocation rule. We comprehensively investigate the drawbacks of
the traditional Bayes-Stein model and develop a generalized counterpart by refining
model components with various well-tailored machine learning techniques, expanding
the scope and applicability of the original Bayes-Stein model. Specifically, we pro-
pose a time-dependent weighted Elastic Net (TW-ENet) approach predicting expected
asset returns, a hybrid double selective clustering combination (HDS-CC) strategy
calibrating shrinkage factors, and a graphical adaptive Elastic Net (GA-ENet) algo-
rithm estimating the inverse covariance matrix. Empirical studies demonstrate that
our generalized Bayes-Stein framework can always offer better out-of-sample perfor-
mance than the 1/N strategy. Importantly, our study tailors existing machine learning
methods considering specifics of financial issues, illustrating appealing directions for
solving challenging financial problems with machine learning.
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1 Introduction
The seminal mean-variance portfolio optimization framework of Markowitz (1952) is proba-
bly the most popular portfolio construction technique widely used by academics and the asset
management industry. This model achieves an optimal risk-return trade-off when the input
parameters (mean returns and covariances of returns) are known with certainty. However,
in practice, vanilla mean-variance portfolios perform poorly out of sample due to parameter
uncertainty and the model’s extreme sensitivity to estimation errors of the input param-
eters (see, e.g., Chopra and Ziemba, 1993; Kan and Zhou, 2007; Kuhn et al., 2009; Lim,
Shanthikumar and Vahn, 2012; Levy and Levy, 2014; Kan, Wang and Zhou, 2022). Various
asset allocation schemes have been proposed to ameliorate the negative effects of estimation
errors. Among them, strategies producing shrinkage estimators stand out because of their
theoretical and empirical appeal in mitigating parameter uncertainty and offering gains for
portfolio optimization (see Jorion, 1986; Frost and Savarino, 1986; Ledoit and Wolf, 2003,
2017).

Among the class of shrinkage estimators, the Bayes-Stein model of Jorion (1986), as
one of the first endeavors embedding shrinkage models in portfolio selection1, enjoys popu-
larity in the literature either as the fundamental parameter estimation model of the classic
Markowitz mean-variance framework, or as a benchmark model relative to alternative esti-
mation methods (see, e.g., Board and Sutcliffe, 1994; Barroso and Saxena, 2021; Platanakis,
Sutcliffe and Ye, 2021). It is founded on the pioneering James-Stein theory (Stein, 1956;
Stein and James, 1961) that shrinks the maximum likelihood estimator (MLE) of a multi-
variate normal distribution with dimensions greater than two towards a specified target (the
grand mean), delivering a mean estimator with a smaller mean squared error (MSE) than
MLE. Particularly, the Bayes-Stein model derives estimators of the mean returns vector and
the covariance matrix by integrating the James-Stein estimator into a Bayesian framework
and assuming a suitable prior about the shrinkage factor (Jorion, 1985). It finally mitigates
the estimation risk of mean returns by shrinking the sample means towards the expected
return of the global minimum variance portfolio. Hence, the classical Bayes-Stein model
possesses solid theoretical foundations, and it is of interest to explore it further with new
perspectives.

However, the mean returns and the inverse covariance matrix2 outputted by the conven-
1Another similar shrinkage estimator of mean returns is suggested by Frost and Savarino (1986), in which

the historical grand average of all assets is used as the shrinkage target.
2In the light of Nguyen, Kuhn and Mohajerin Esfahani (2022), the covariance matrix exists in the for-

2



tional Bayes-Stein model still present huge estimation errors, resulting in a relatively weak
out-of-sample portfolio performance. For example, it cannot consistently outperform the
“naive” equally-weighted (1/N) portfolio allocation rule that does not require any optimiza-
tion and equally distributes capital among different underlying assets (DeMiguel, Garlappi
and Uppal, 2009). Our motivation starts from this stylized fact. Moreover, while previous
studies have conducted plenty of comparative analyses of the Bayes-Stein framework to al-
ternative models, few explicitly examine the fundamental limitations of this rather intuitive
model and attempt to improve the classical shrinkage portfolio optimization framework. Be-
sides, on the one hand, the traditional Bayes-Stein model contaminated by estimation errors
of the model components (the sample means vector, the grand mean, and the shrinkage
factor) fails to provide an accurate proxy for the expected returns. On the other hand, this
model concentrates on the shrinkage estimator for mean returns and only provides a sample-
based formulation for the covariance matrix without accounting for the financial specifics of
the covariance matrix or its inverse. Thus, it is crucial to offer ways to move beyond the
original Bayes-Stein framework and produce an efficient and complete counterpart.

To fill these gaps, first, we analytically identify the main drawbacks of the classical
Bayes-Stein model, namely low accuracy of the mean estimator, calibration error of the
shrinkage factor weighting the sample mean and grand mean, and estimation risk of the
inverse covariance matrix. Based on its drawbacks, we propose a generalized framework
with well-designed machine learning techniques addressing the corresponding shortcomings
of the original model, thereby “revitalizing” the traditional Bayes-Stein model. Specifically,
we propose a time-dependent weighted Elastic Net (TW-ENet) approach to exploit the pre-
dictability of financial asset returns for refining the core components of the Bayes-Stein
model, namely the sample mean and the shrinkage target (the grand mean). Additionally,
we improve the Bayes-Stein model by accommodating the calibration error of the shrinkage
factor via the hybrid double selective clustering combination (HDS-CC) technique, forming
a four-stage grouped Bayes-Stein shrinkage approach. Further, we propose the graphical
adaptive Elastic Net (GA-ENet) method for generating a shrinkage estimator of the inverse
covariance matrix to complement the Bayes-Stein model. By bringing these methodological
developments together, we build a generalized Bayes-Stein framework for portfolio optimiza-
tion in the era of machine learning, allowing us to expand the Bayes-Stein model’s scope and
applicability significantly.

mulations of optimization problems, whereas its reverse emerges in the corresponding solutions. Thus our
paper focuses on the inverse covariance matrix.
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Our study is related to several strands of literature. Generally, portfolio optimization
falls into a “predict-then-optimize” paradigm where the outcome of moments prediction for
asset returns can be used to fuel an asset allocation scheme (El Balghiti et al., 2022; El-
machtoub and Grigas, 2022). Thus, methodologies for parameter estimation and decision
optimization, including traditional approaches3 and novel machine learning techniques, can
play a crucial role in the asset allocation procedure. Prior literature has leveraged various tra-
ditional methods for portfolio optimization. For instance, Anderson and Cheng (2022) pro-
pose a Bayesian-averaging heterogeneous vector autoregressive strategy incorporating plenty
of return-predicting models to generate optimal portfolio choice and robust out-of-sample
performance. Kan, Wang and Zhou (2022) theoretically and empirically introduce an opti-
mal combination strategy flexible with established portfolio rules to reduce estimation risk in
the input parameters. In addition, approaches based on traditional statistical or mathemat-
ical theories have also been employed in portfolio-related scenarios. For example, Giesecke
et al. (2014) obtain the optimal credit swaps portfolios based on a goal program that trans-
lates the portfolio selection problem into a constrained optimization of preference-weighted
portfolio moments. Sirignano, Tsoukalas and Giesecke (2016) recommend an approximate
optimization approach for asset allocation in large portfolios of various risky loans. More-
over, some attempts have been made to improve other portfolio optimization frameworks,
such as the Black-Litterman model (see, Bertsimas, Gupta and Paschalidis, 2012; Chen and
Lim, 2020). In this paper, we seek to refine the original Bayes-Stein framework by involving
some insights from traditional mathematical or statistical theories and advanced machine
learning methods. For instance, we mainly employ the combination strategy to increase the
stability and robustness of clustering.

In terms of machine learning methods, there is much evidence that they can shed light
on solving financial problems (see, e.g., Chen, Pelger and Zhu, 2019; Avramov, Cheng and
Metzker, 2022). Generally, three distinct streams of work apply machine learning tools in
portfolio choice problems. The first focuses on the estimation issues of various input parame-
ters under the traditional mean-variance paradigm, such as mean returns and the covariance
matrix. For example, Ban, El Karoui and Lim (2018) adopt machine learning techniques
(regularization and cross-validation) to constrain the sample variances of portfolio risk and
return to reduce uncertainty. Besides, Kynigakis and Panopoulou (2022) demonstrate that
returns produced by the combination of machine learning forecasting models can provide

3Traditional approaches refer to ones without involving machine learning, such as sophisticated econo-
metric models.
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superior benefits to asset allocation, thereby building portfolios that outperform the 1/N
rule. The second stream is about the sparse portfolio selection problem by directly handling
asset weights with machine learning methods. For instance, Ao, Yingying and Zheng (2019)
employ the least absolute shrinkage and selection operator (LASSO) to constrain portfolio
weights. Similarly, Bertsimas and Cory-Wright (2022) introduce a scalable algorithm for
sparse portfolio choice by imposing a ridge regularization on asset weights. Finally, another
stream of work is bypassing the mean-variance framework and constructing portfolios with
assets selected by machine learning models, thereby augmenting the performance of portfo-
lios. For instance, Cong et al. (2021) grade assets by virtue of a deep learning model (the
Transformer model) and directly optimize the investment criterion (Sharpe ratio) through
reinforcement learning. In contrast to existing studies on portfolio optimization with ma-
chine learning, in this paper, different highly flexible machine learning methods are tailored
and implemented to take into account various specifics and limitations of the Bayes-Stein
model.

In a nutshell, our study aims to address the shortcomings of the traditional Bayes-Stein
model and develop a generalized counterpart that possesses desirable properties and gener-
ates superior out-of-sample portfolio performance. We achieve this aim via the novel imple-
mentation of machine learning techniques (e.g., supervised learning of regularized regression
and unsupervised learning of clustering) in conjunction with statistical or mathematical ap-
proaches (e.g., combination theory). As the first study in the literature deconstructing the
Bayes-Stein portfolio-optimization framework and improving it by applying machine learning
techniques, we make several methodological contributions.

First, the sample-based historical mean returns vector is an essential component of
the Bayes-Stein model. It also significantly impacts the grand mean (the expected return
of the global minimum variance portfolio), deteriorating the Bayes-Stein mean estimator’s
accuracy. To deal with this problem, we suggest improving the mean estimator from the
standpoint of time-series return forecasting by generating a more accurate estimator to re-
place the sample mean, which can then be converted into portfolio gains. Specifically, since
LASSO-based methods are not designed to cater to specifics of financial time series such
as structural breaks and dependence over time and across assets, we propose a TW-ENet
technique that incorporates critical time-series information on financial asset returns to deal
with this problem. It assigns greater weights to the more recent observations controlled by
an adaptive data-driven weighting parameter that make it more suitable for the peculiari-
ties of financial time series. Consequently, we can exploit the return predictability that the
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usual Bayes-Stein model entirely ignores. Moreover, we empirically demonstrate that this
approach can present a performance edge in general over other sophisticated machine learn-
ing methods in the context of portfolio management. Thus our study also offers valuable
insights for the research on asset return forecasting.

Second, the shrinkage factor determines the trade-off between the sample means and the
grand mean. The conventional Bayes-Stein model assigns the same shrinkage factor to all
assets in the portfolio, which fails to capture feature differences between assets and implicitly
jeopardizes the accuracy of the mean return estimator especially when the number of assets
is relatively large. Hence, we attempt to further improve the original Bayes-Stein model from
the perspective of shrinkage factor with refinements that take into account individual differ-
ences of assets. Instead of directly handling the shrinkage factor, we analytically introduce
the clustering analysis (unsupervised learning) to partition assets into multiple subgroups
and accordingly allocate specific shrinkage factors to these homogeneous asset subsets with
indistinguishable features. Further, in order to enhance the stability and robustness of clus-
tering, we propose a hybrid double selective clustering combination (HDS-CC) strategy with
respect to the quality and diversification of clustering represented by the quality score and
the normalized mutual information, respectively. Specifically, we adopt four well-established
clustering algorithms, i.e., K-means, Hierarchical clustering, Spectral clustering, and Fuzzy
c-means. To the best of our knowledge, we are the first to incorporate the idea of clustering
combination (ensemble learning) into shrinkage models for portfolio optimization. Finally, a
flexible four-stage grouped Bayes-Stein shrinkage approach based on HDS-CC is developed
in our paper. This approach provides the classical shrinkage factor calibration with desir-
able properties, i.e. capturing individual differences of assets and retaining the time-varying
feature.

Last but not least, the original Bayes-Stein model mainly focuses on the shrinkage esti-
mator of mean returns without much attention to the inverse covariance matrix. However,
in pursuing the optimal asset allocation decision under the mean-variance framework, the
Bayes-Stein model still relies on the sample-based inverse covariance matrix, posing estima-
tion risk and challenges to portfolio optimization. Thus, an accurate and reliable estimation
of the inverse covariance matrix will benefit the asset allocation decision process and comple-
ment the Bayes-Stein model with a more generalized framework. We herein seek to improve
the inverse covariance matrix estimation from the perspective of “sparse hedging”. “hedging”
implies that elements in the inverse covariance matrix of returns represent hedging relation-
ships between assets, and “sparse” indicates it is beneficial to hedge one asset with some
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of the remaining assets (Stevens, 1998; Goto and Xu, 2015). Thus, “sparse hedging” pro-
vides a financial interpretation for the inverse covariance matrix. Furthermore, achieving the
sparse hedging represented by a sparse inverse covariance matrix is tantamount to Gaussian
graphical modeling, where the graphical LASSO method is commonly used in the finance
literature. However, issues originating from LASSO can influence the graphical LASSO as
well. For example, because LASSO only arbitrarily selects one variable from a group of
high-correlated variables and the number of variables selected by LASSO is bounded by the
number of observations, the sparsity of the inverse covariance matrix yielded by the graph-
ical LASSO is affected. Hence, we propose a graphical adaptive Elastic Net (GA-ENet)
algorithm to estimate the sparse inverse covariance matrix. The GA-ENet approach poses
adaptive weights on different elements of the inverse covariance matrix as the adaptive Elas-
tic Net does (Zou and Zhang, 2009), leading to a theoretically superior performance than
the graphical LASSO. Additionally, the newly developed GA-ENet approach extends the
Bayes-Stein model, allowing it to be applied to large portfolios (the number of assets is com-
parable to or exceeds the sample size) where the sample-based covariance matrix is unstable
or noninvertible.

In the empirical analysis, we comprehensively compare the out-of-sample performance of
our generalized Bayes-Stein framework with the naive 1/N rule. Results of various datasets
reveal that our generalized method results in superior asset allocation decisions with substan-
tially higher Sharpe ratios and certainty equivalent returns, which is robust to transaction
costs, risk aversion parameters, the length of estimation window, and window estimation
methods. Moreover, we verify the effectiveness of different parts of our generalized Bayes-
Stein model by model decomposition and confirm its combining advantages from various
machine learning techniques. Furthermore, in robustness checks, we examine the effective-
ness of our time-series return prediction model in the generalized Bayes-Stein framework.
Comparing with other machine learning methods, i.e., the ordinary least squares post LASSO
(OLS-post LASSO) approach, the combination Elastic Net (C-ENet) method, and the Ran-
dom Forest technique, our proposed time-dependent weighted Elastic Net (TW-ENet) model
is more effective in portfolio optimization. Notably, our empirical study shows that the clas-
sic Bayes-Stein portfolio-optimization framework can be improved through different machine
learning techniques. At the same time, machine learning models can play a better role when
they are adjusted according to the specifics of financial issues and modified by advanced
mathematical methods. Thus, our study offers promising and appealing directions for solv-
ing challenging financial problems in the era of machine learning.
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The remainder of this paper is organized as follows. Section 2 provides a description and
well-grounded analysis of the conventional Bayes-Stein model, and extensively analyzes its
main drawbacks. We introduce our generalized Bayes-Stein framework in detail in Section
3. In Section 4, the results of the empirical analysis are presented to substantiate the ability
of the proposed model to achieve significant out-of-sample performance. Section 5 offers
an overview of our robustness checks. Finally, Section 6 concludes the paper and discusses
directions for future research. Appendices contain proof of propositions, datasets description,
supplementary results, and robustness checks.

2 The Bayes-Stein Model and Its Limitations
Since the Bayes-Stein model stems from the cornerstone results of the James-Stein theory, for
analytical tractability, we first briefly outline the statistical background and fundamentals
of this model and offer a graphical representation of its portfolio management application.
Then, we highlight the three major limitations of its classical version, namely the low ac-
curacy of the mean estimator (µ̂BS), calibration error of the shrinkage factor (gBS), and
estimation risk of the inverse covariance matrix (Σ̂−1

BS), for rationally introducing our gener-
alized Bayes-Stein framework in Section 3.

2.1 Description

2.1.1 The James-Stein Theory

Given N independently and normally distributed variables X = (X1, . . . , XN)
′ with un-

known means µ = (µ1, . . . , µN)
′, Stein (1956) stuns the statistical community by demon-

strating the inadmissibility of the sample mean estimator when N > 2, which is called
Stein’s Paradox.4 Stein and James (1961) generalize Stein’s demonstration and explic-
itly provide an estimator known as the James-Stein estimator µ̂JS that strictly dominates
the maximum likelihood estimator µ̂MLE in terms of the mean squared error (MSE). For
simplicity, assuming a multivariate normal distribution with mean vector µ and covari-
ance matrix the identity I, X ∼ N(µ, I), the James-Stein estimator with the property

4Inadmissibility of an estimator means that it is dominated by another estimator in terms of some criteria,
e.g., total squared error loss.
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E
(
∥µ̂JS − µ∥22

)
< E

(
∥µ̂MLE − µ∥22

)
is defined as

µ̂JS =

(
1− N − 2

∥µ̂MLE∥22

)
µ̂MLE +

N − 2

∥µ̂MLE∥22
0, (1)

where N > 2 is the number of estimated variables, and the vector 0 represents a special case
of the shrinkage target, indicating the sample means vector is shrunk toward 0.

Furthermore, the James-Stein estimator can be interpreted from an empirical Bayes
perspective, offering a general form for X ∼ N(µ,Σ):

µ̂JS = (1− gJS) µ̂MLE + gJSµ̂target1, (2)

where µ̂target represents the shrinkage target, or prior information, with an arbitrary choice
such as zero or the average of all sample means. The scalar 0 ≤ gJS ≤ 1 indicates the
shrinkage factor, determining the weighting of the maximum likelihood estimator and the
shrinkage target. When gJS equals 0, it means no shrinkage, whereas 1 represents full
shrinkage. gJS is calculated as follows:

gJS = min

{
1,
N − 2

T
· 1

(µ̂MLE − µ̂target1)′Σ−1(µ̂MLE − µ̂target1)

}
, (3)

where T denotes the time horizon of historical observations.

2.1.2 The Bayes-Stein Model

The Bayes-Stein model is derived from the influential James-Stein theory and the empirical
Bayes framework in the context of portfolio selection. A general form of the estimated mean
returns vector µ̂BS of the Bayes-Stein model is given by

µ̂BS = (1− gBS) µ̂S + gBSµG1, (4)

where µ̂S represents the vector of sample mean returns, µG is the target estimator that refers
to the mean return of the global minimum variance portfolio (GMV), and 1 is an N × 1

vector of ones. gBS, 0 ≤ gBS ≤ 1, indicates the shrinkage factor (or shrinkage intensity),
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calculated by a closed-form formula:

gBS =
N + 2

(N + 2) + T (µ̂S − µG1)
′ Σ−1 (µ̂S − µG1)

, (5)

where N > 2 is the number of assets. As the covariance matrix Σ of asset returns is unknown
in practice, it is replaced with T−1

T−N−2
S, denoted by Σ̂S, where S is the sample covariance

matrix.5

The James-Stein and Bayes-Stein mean estimators shrink the sample means towards the
grand mean, but their shrinkage target selection differs. Theoretically, from the Bayesian
perspective, the grand mean represents the prior information about the assets’ mean returns,
and the true mean is expected to vary around it. Therefore, the resulting expected returns by
the Bayes-Stein model can effectively mitigate the estimation error of the sample means by
shrinking them towards the target (the mean return of GMV). Furthermore, the Bayes-Stein
mean estimator can effectively ease the sensitivity of the parameters of the mean-variance
framework by reducing the undesirable influence of outliers of historical returns.

In addition, the covariance matrix of the Bayes-Stein model is estimated as follows:

Σ̂BS =

(
T + φ+ 1

T + φ

)
Σ̂S +

φ

T (T + φ+ 1)

11′

1′Σ̂−1
S 1

, (6)

where

φ =
N + 2

(µ̂S − µG1)
′ Σ̂−1

S (µ̂S − µG1)
. (7)

2.1.3 Graphical Representation of the Bayes-Stein Model

There are four steps to complete the optimal asset allocation when integrating the Bayes-
Stein model into the mean-variance framework for portfolio selection. The graphical repre-
sentation is shown in Figure 1.

5In this paper, we call Σ̂S the sample-based covariance matrix and S the sample covariance matrix.
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Figure 1: Graphical Representation of the Bayes-Stein Model

Rt

µ̂S Σ̂S

µG

µ̂BS, Σ̂BS

wBS

First, given the historical asset returns Rt, we compute the sample mean estimator
µ̂S and the sample-based covariance matrix Σ̂S. Second, we use these two parameters
to generate µG, the mean return of the global minimum variance (GMV) portfolio whose
objective function is given as follows:

min
wG

1

2
w′
GΣ̂SwG, (8)

where wG is the optimal weights of GMV.
As a result, µG is calculated by µ̂′

S
Σ̂−1

S 1

1′Σ̂−1
S 1

. Third, through (4) and (6), we acquire the
Bayes-Stein estimates µ̂BS and Σ̂BS. In the end, we involve the results of the third step into
the mean-variance framework6 to generate the optimal asset weights, denoted by the vector
wBS, by maximizing the following quadratic utility function:

max
wBS

{
w′

BSµ̂BS −
λ

2
w′

BSΣ̂BSwBS

}
, (9)

where λ represents the risk aversion parameter.
6For simplicity, we do not add any constrains here.

11



2.2 Limitations of the Bayes-Stein Model

The Bayes-Stein model has been widely used in the portfolio management literature as the
benchmark, or the fundamental parameter estimation model of the classic Markowitz mean-
variance framework. Nevertheless, few studies delve into it. In this section, we highlight
three shortcomings of the original Bayes-Stein model. Note that, for easier understanding,
we accordingly conduct some empirical studies to support our statements.7

2.2.1 Low Accuracy of the Mean Estimator µ̂BS

Theoretically, portfolio selection is about optimal allocation of weights across assets. Hence
various techniques for estimating the input parameters of the mean-variance framework are
evaluated by the out-of-sample portfolio performance. Since the accuracy of the mean es-
timator is crucial to portfolio gains, we first interpret the Bayes-Stein mean estimator by
the bias-variance trade-off shown in the following proposition and further assess it from the
perspective of forecasting performance.

Proposition 1: By bias-variance decomposition, the mean squared error (MSE) of an
estimator µ̂ of the mean returns vector µ is determined by

E
[
∥µ̂− µ∥22

]
= ∥E[µ̂]− µ∥22 + E

[
∥µ̂− E[µ̂]∥22

]
, (10)

where ∥E[µ̂] − µ∥22 and E [∥µ̂− E[µ̂]∥22] denote bias’s square and variance of the estimator
µ̂, respectively.

It is well established that a multivariate normal distribution’s sample mean (the max-
imum likelihood estimator) is unbiased, but has high variance. When the sample mean is
combined with a shrinkage target, its variance is reduced, whereas its bias increases (Tu
and Zhou, 2011). Therefore, the Bayes-Stein model achieves an optimal bias-variance trade-
off by shrinking the maximum likelihood estimator towards the grand mean, resulting in a
shrinkage mean estimator that dominates the sample mean.

However, though the Bayes-Stein mean estimator can outperform the sample mean in
terms of the mean squared forecasting error and out-of-sample portfolio performance, it still
suffers from errors caused by two sample-based components in the model, namely the sample

7For brevity, herein, we present representative results. The complete results of other datasets used in this
paper are reported in Appendix C of the Online Supplementary Appendix.
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mean µ̂S and the grand mean µG, which may lead to its inferiority relative to alternative
mean estimators.

To examine the accuracy of different mean estimators, we compute their mean squared
forecasting error (MSFE). To illustrate, Table 1 displays the MSFE of the sample mean and
the Bayes-Stein mean estimator for the 10 industry portfolios.8 The results indicate that
the Bayes-Stein mean estimator cannot substantially reduce the overall estimation error
compared with the sample mean.

Table 1: Mean Squared Forecasting Error of the Mean Return Estimators
Table 1 reports the out-of-sample mean squared forecasting error of the monthly sample mean and
Bayes-Stein mean estimator for the 10 industry portfolios. The estimation process is based on a 20-
year expanding window with the initial data period from July 1963 to June 1983. The out-of-sample
period covers from July 1983 to December 2021.

Asset Sampe Mean (×104) Bayes-Stein Shrinkage Mean(×104)

Consumer Nondurables 16.86 16.91
Consumer Durables 55.92 55.86
Manufacturing 24.50 24.49
Energy 37.65 37.66
HiTec 44.75 44.72
Telcom 25.10 25.07
Shops 24.03 24.04
Health 21.19 21.22
Utilities 15.52 15.47
Other 26.94 26.93

Sum 292.46 292.37

Moreover, in terms of the forecasting performance of the Bayes-Stein, we can also find
some arguments from previous portfolio optimization literature. For example, Jorion (1991)
finds that the Bayes-Stein mean estimator fails to outperform the CAPM-based estimator
in forecasting asset returns. Similarly, Craig MacKinlay and Pástor (2000) conclude that
factor-based asset pricing models are more precise in estimating the expected returns, com-
pared with the Jame-Stein mean estimator. Barroso and Saxena (2021) also report the
weak performance of the Bayes-Stein shrinkage strategy in terms of the root mean squared

8This data is extracted from the website of Ken French. Appendix B of the Online Supplementary
Appendix gives a detailed description of the 10 industry portfolios.
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forecasting error (RMSFE). Therefore, improving the accuracy of the mean estimator by
sophisticated extensions over the Bayes-Stein model will shed some light on the portfolio
selection.

2.2.2 Calibration Error of the Shrinkage Factor gBS

The shrinkage factor determines the optimal trade-off between the sample estimator and the
shrinkage target. In existing studies, it is usually calculated by solving a heuristic quadratic
minimization loss function that is the aggregate of every component’s estimation loss (see,
e.g., DeMiguel, Martin-Utrera and Nogales, 2013; Kircher and Rösch, 2021). In terms of
the Bayes-Stein mean estimator, the shrinkage factor gBS minimizes the total squared error
loss of all individual mean estimators of assets. As shown in Figure 2, we can get a fixed
shrinkage factor across all assets in each out-of-sample time point.

Figure 2: Shrinkage Factor for 10 Industry Portfolios

As a result, the mean returns obtained via the Bayes-Stein model only dominate the
sample means under total squared error. However, this does not imply that each component
of the Bayes-Stein shrinkage estimator of the mean returns can outperform the corresponding
element in the sample means vector. For example, in Table 1, some individual members of
the Bayes-Stein means vector, such as Consumer Nondurables and Shops, even have more
estimation risk than the sample mean. Going further, we can conclude that the Bayes-Stein
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shrinkage factor is generated without considering the difference between individual assets,
which may produce calibration errors for the shrinkage factor. Unfortunately, albeit existing,
studies pointing out this issue are scarce.

2.2.3 Estimation Risk of the Inverse Covariance Matrix Σ̂−1
BS

The solution to (9) is wBS = (1/λ) ˆΣBS

−1
µ̂BS, with 1−1′wBS invested in the risk-free asset.

As a result, the vector of normalized weights (w) invested in the risky assets is given as
follows:

w =
Σ̂−1
BSµ̂BS

1Σ̂−1
BSµ̂BS

. (11)

Importantly, (11) suggests that the mean-variance optimal weights are determined by
the inverse covariance matrix Σ̂−1

BS and the mean returns vector µ̂BS. In the classical Bayes-
Stein model, Σ̂−1

BS is proportional to the sample inverse covariance matrix, casting some
estimation risk on the estimated inverse covariance matrix, which also influences the final
asset allocation decision.

Commonly, the Frobenius norm is used to measure estimation errors of the sample
inverse covariance matrix S−1 and the Bayes-Stein inverse covariance matrix Σ̂−1

BS, denoted
by e, given as follows:

e = ∥Σ−1 − Σ̂−1∥F =
{
trace

(
(Σ−1 − Σ̂−1)(Σ−1 − Σ̂−1)′

)}1/2

, (12)

where Σ−1 denotes the actual inverse covariance matrix and Σ̂−1 is its estimate.
As it is hard to obtain the true inverse covariance matrix9, we use the condition numbers

of S−1 and Σ̂−1
BS to demonstrate their estimation risk. In Table 2, we report the results of

some commonly used datasets.10 Results indicate that the sample inverse covariance matrix
and Bayes-Stein inverse covariance matrix are ill-conditioned in all datasets. The situation
worsens when the number of assets becomes large.

9Shi et al. (2019) get the true inverse covariance matrix by generating asset excess returns simulated with
the Fama-French 3-factor model.

10The detailed description about the datasets is presented in Section 4 and Appendix B of the Online
Supplementary Appendix.
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Table 2: Condition Numbers for Inverse Covariance Matrix Estimates
Table 2 reports the mean and standard deviation of condition numbers of the
sample inverse covariance matrix (S−1) and the Bayes-Stein inverse covariance
matrix (Σ̂−1

BS) during the out-of-sample period over three random datasets (Ind10,
FF25, and FF100BM), to demonstrate the estimation risk of the Bayes-Stein in-
verse covariance matrix. The estimation process is based on a 20-year expanding
window with the initial data period from July 1963 to June 1983. The out-of-
sample period covers from July 1983 to December 2021.

Ind10 FF25 FF100BM

Mean Standard
Deviation

Mean Standard
Deviation

Mean Standard
Deviation

S−1 114.9 21.2 969.47 110.37 3018.5 840.7
Σ̂−1
BS 115 21.2 969.78 110.52 3019 840.9

3 Generalized Bayes-Stein Framework with Machine
Learning

This section compares the classical Bayes-Stein model and its generalized counterpart we
develop, followed by an elaboration of the generalized Bayes-Stein framework and how it
works with machine learning. Specifically, we suggest a time-dependent weighted Elastic Net
(TW-ENet) approach from the perspective of time-series return forecasting to replace the
sample means vector in the Bayes-Stein model, a four-stage grouped Bayes-Stein shrinkage
strategy based on the hybrid double selective clustering combination (HDS-CC) method to
improve the measurement of shrinkage factors, and a graphical adaptive Elastic Net (GA-
ENet) algorithm to estimate the inverse covariance matrix. As a result, a holistic generalized
Bayes-Stein framework integrating these proposed approaches is established.

3.1 Overview

In principle, both the standard Bayes-Stein model and the generalized version concern the
input parameters of the Markowitz mean-variance framework, namely the expected returns
and the covariance matrix or its inverse, but they differ in their model construction process
and specific components. Overall, our generalized Bayes-Stein model incorporates insights
from machine learning methods to replace the three branches of the original mean estimator,
including the sample means vector µ̂S, the grand mean µG, and the shrinkage factor gBS,
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and generates a refined inverse covariance matrix Σ̂−1
GBS. A comparison is presented in Table

3. We will go through it in depth now.

Table 3: Comparison of the Classical and Generalized Bayes-Stein Framework

Model Traits Bayes-Stein Model Generalized
Bayes-Stein Framework

Sample Mean µ̂S, simple average
of historical asset returns

µ̂F , expected returns predicted
by various time-series predictors

via the TW-ENet approach

Grand Mean µG, mean return of GMV,
depends on µ̂S

µGF , mean return of GMV
depends on µ̂F

Shrinkage Factor same across all assets
same across assets of the same

subgroup generated by
clustering ensemble

Mean Estimator µ̂BS, low accuracy µ̂GBS, relatively high accuracy

Inverse Covariance Matrix Σ̂−1
BS, sample-based

Σ̂−1
GBS, a sparse shrinkage
estimator produced by

the GA-ENet

The sample mean (µ̂S, µ̂F ) and the grand mean (µG, µGF ): In terms of the mean
estimator, we have empirically demonstrated that the ability of the original Bayes-Stein
mean estimator used to predict the expected asset returns remains questionable.11 Since the
Bayes-Stein mean estimator strongly relies on three components, namely the sample mean
µ̂S, the grand mean µG, and the shrinkage factor gBS, accurate and reliable input parameters
will enhance the accuracy of the mean estimator. We first consider the sample mean and
the grand mean. The classical Bayes-Stein model derives from purely statistical principles,
which only uses historical asset returns and ignores other important financial time-series
information that might help explore the predictability of asset returns.

In our extended version of the Bayes-Stein model, we build a time-series return fore-
casting model to create a more accurate return prediction to replace the sample mean and
update the grand mean, resulting in a significantly improved shrinkage mean estimator. Fur-

11If not especially specified, in this paper, the expected asset returns actually refer to the expected excess
returns over the risk-free rate.
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thermore, in the age of big data, forecasting returns by typical econometric approaches (e.g.,
linear regression models and the autoregressive moving average model) is challenging due
to the existence of numerous predictors and dynamic changes in financial time-series data
(Lettau and Pelger, 2020; Martin and Nagel, 2022). Hence, we propose a data-driven time-
dependent weighted Elastic Net (TW-ENet) technique for forecasting asset returns, which
accommodates the characteristics of financial time-series data, such as high dimensionality,
structural breaks, and dependence over time and across assets.

The shrinkage factor (gBS): Consider now the shrinkage factor. Mathematically,
(5) indicates that the Bayes-Stein shrinkage factor gBS depends on three time-varying pa-
rameters, viz. the sample mean µ̂S, the grand mean µG, and the inverse covariance matrix
Σ−1. Hence the calculated gBS is also time-varying (as shown in Figure 2), which means it
is a function of data samples:

gBS(t) = f (R(t)) , (13)

where R(t) denotes asset returns of different time periods.
So, the conventional Bayes-Stein model and its generalized counterpart enjoy the shrink-

age factor’s time-varying feature. However, the classical version assigns the same shrinkage
factor to all assets in the portfolio regardless of their differences. In contrast, the generalized
framework considers individual differences in assets, which means the shrinkage factor is not
only time-varying but also asset-varying. Specifically, it uses a hybrid double selective clus-
tering combination (HDS-CC) scheme to partition assets into distinct subsets with different
shrinkage factors, thereby mitigating the calibration error of the shrinkage factor by offering
gains to the conventional Bayes-Stein model.

The inverse covariance matrix (Σ̂−1
BS, Σ̂−1

GBS): Finally, the inverse covariance matrix
is a core ingredient in transforming assets’ mean returns into optimal weights of the mean-
variance portfolio. The original Bayes-Stein model calculates the sample-based covariance
matrix first and then obtains its reverse, which is unstable and suffers from serious estimation
errors. Moreover, the estimation error of the sample covariance matrix and its inverse is
closely related to N/T , where N is the number of assets and T is the sample size (Kan and
Zhou, 2007). The estimation error will significantly rise when N/T grows somewhat high
(but less than 1). On the other hand, when N/T > 1 (large portfolios), it even raises the
problem of the sample covariance matrix’s irreversibility.

By contrast, the generalized Bayes-Stein model directly deals with estimating the in-
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verse covariance matrix and suggests a sparse estimator for the inverse covariance matrix.
Specifically, it applies our proposed graphical adaptive Elastic Net (GA-ENet) approach
to meliorate the sparse inverse covariance matrix estimation. As a result, the generalized
model improves the inverse covariance matrix estimation and complements the standard
Bayes-Stein model by generating a shrinkage estimator for the inverse covariance matrix,
making it more flexible and capable of constructing large portfolios.

By and large, the generalized Bayes-Stein framework attempts to address critical draw-
backs of the classical Bayes-Stein model, thereby providing refined input parameters to the
traditional portfolio optimization framework. As a result, the plug-in mean-variance strategy
can benefit from improved parameter estimation and takes asset allocation decisions yielding
better out-of-sample portfolio performance. Its graphical representation is presented in Fig-
ure 3, where the superscript 1, 2, · · · , K denotes the index of different asset groups yielded
by the clustering analysis in HDS-CC. g1, g2, · · · , gK denote the specific shrinkage factor for
the corresponding asset group. µ̂F1 , µ̂F2 , · · · , µ̂FK

, and µGF1 , µGF2 , · · · , µGFK
are constructed

with the TW-ENet approach, and represent the upgraded sample mean and grand mean of
the different asset groups, respectively. Consequently, the optimal asset weights vector wGBS

is produced based on the generalized Bayes-Stein framework.

Figure 3: Graphical Representation of the Generalized Bayes-Stein Framework

µ̂F1 , µ̂F2 , · · · , µ̂FK
,

generated by TW-ENet Σ̂S1 , Σ̂S2 , · · · , Σ̂SK

µGF1 , µGF2 , · · · , µGFK

µ̂F1 , µ̂F2 , · · · , µ̂FK
,

generated by TW-ENet
g1, g2, · · · , gK ,

generated by HDS-CC

µ̂GBS1 , µ̂GBS2 , · · · , µ̂GBSK

µ̂GBS,
mean estimator of generalized Bayes-Stein

Σ̂−1
GBS,

generated by GA-ENet

wGBS
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With this graph in mind, we can proceed to elaborate on the generalized Bayes-Stein
framework in the era of machine learning.

3.2 Time-series Return Forecasting

First, the generalized Bayes-Stein model seeks to improve the classical Bayes-Stein mean
estimator by substituting the sample mean components with the results of time-series re-
turn forecasting. Essentially, the return forecasting process amounts to extracting efficient
information from several predictors, expressed by a conventional predictive regression model
with D predictors:

rt = β0 +
D∑
d=1

βdxd,t−1 + ϵt, (14)

where rt is the expected excess return at time t, and xd,t−1 is the dth predictor variable at
time t− 1. ϵt represents a zero-mean disturbance term.

In the light of Welch and Goyal (2008), traditional linear regression models exhibit poor
out-of-sample performance in the high-dimensional financial time series space due to mul-
ticollinearity and overfitting, which makes machine learning approaches suitable for asset
returns prediction. Moreover, among various machine learning methods for returns fore-
casting, the least absolute shrinkage and selection operator (LASSO) and its variants (e.g,
adaptive LASSO and Elastic Net) stand out owing to their predictive accuracy and model
interpretability. They can perform variable selection and parameter estimation simultane-
ously (Tibshirani, 1996) and have been widely used to explore the predictability of asset
returns (see, e.g., Freyberger, Neuhierl and Weber, 2020; Dong et al., 2022). The objective
function of a popular LASSO-based approach, Elastic Net (Zou and Hastie, 2005), is given
as follows:

argmin
β0,...,βD∈R

 1

2T

T∑
t=1

(
rt − β0 −

D∑
d=1

βdxd,t−1

)2

+ τ

(
ρ

D∑
d=1

|βd|+
1

2
(1− ρ)

D∑
d=1

β2
d

) , (15)

where the parameter ρ represents a compromise between ridge (ρ = 0) and LASSO (ρ = 1).
The tuning parameter τ controls the overall penalty strength.

However, existing studies that leverage LASSO-based methods for return prediction and
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portfolio optimization fail to account for the specifics of financial time series. For example,
LASSO-based regression models are vulnerable to structural breaks referring to abrupt time
series changes, leading to models’ unreliability and huge forecasting errors (Pesaran, Pick
and Pranovich, 2013). In the light of of Wang, Hao and Wu (2021), more attention should
be paid to more recent observations in the presence of structural breaks. Thus, we tailor
the Elastic Net approach by providing observations with time-dependent weights to improve
forecast accuracy. Specifically, we propose a time-dependent weighted Elastic Net (TW-
ENet) approach to forecast expected returns for replacing the sample mean returns in the
classical Bayes-Stein model, given as follows:

argmin
β0,...,βD∈R

 1

2T

T∑
t=1

wt

(
rt − β0 −

D∑
d=1

βdxd,t−1

)2

+ τ

(
ρ

D∑
d=1

|βd|+
1

2
(1− ρ)

D∑
d=1

β2
d

) , (16)

where wt = tδ represents the time-dependent exponential weight controlled by a positive
hyperparameter δ.

Since t increases with time moving in historical time series and δ is greater than 0,
the exponential function, wt = tδ, imposes greater weights on more recent observations.
Additionally, our TW-ENet approach is equivalent to the classical Elastic Net method when
δ is set to 0. Moreover, because we take market components (e.g., industry portfolios and
factor-sorted portfolios) as portfolio assets, following Kong et al. (2011) and Rapach et al.
(2019), we use various commonly used economic variables12 and lagged components returns13

as independent variables.
To employ the TW-ENet approach, we equally divide the sample up to time T into

the training sample (1, . . . , T/2) and validation sample (T/2 + 1, . . . , T ) in each estimation
window, and then we proceed with the following three steps:

Step I - estimation in the training sample: For L weight parameter candidates14,
denoted by δ1, . . . , δL, we apply (16) to the training sample. Further, for each candidate,
following the study of Rapach and Zhou (2020), we set ρ = 0.5 and use the corrected Akaike
information criterion (AICc) to choose the optimal L1 penalizing parameter τ∗, given as

12In previous studies, they are regarded as efficient predictors for equity returns (Welch and Goyal, 2008).
See Appendix B of the Online Supplementary Appendix for details.

13We employ first-order lagged returns of portfolio assets as a set of predictors. Thus dependence over
time and across assets in financial time series is also considered.

14In our practice, the hyperparameter δ is set from 0 to 10 with a fixed step of 0.1.
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follows:

τ∗ = argmin
τ1,...,τM

[NS ∗ log(RSS/NS) + 2 ∗ df ∗NS/(NS − df)] , (17)

where RSS and df represent the residual sum of squares and degrees of freedom in the
corresponding penalized linear regression model, respectively. NS denotes the number of
observations in the training sample and τ1, . . . , τM denotes the set of τ .

Step II - weight parameter tuning in the validation sample: For each weight
parameter candidate in δ1, . . . , δL, we employ the model estimated in the first step on the
validation sample to predict expected asset returns. Then we pick out the optimal weight
parameter δ∗ by minimizing the weighted square prediction error 15, given as follows:

δ∗ = argmin
δ1,...,δL


∑T

t=T/2+1w
T/2
t−T/2

(
rt − β0 −

∑D
d=1 βdxd,t−1

)2
∑T

t=T/2+1w
T/2
t−T/2

 . (18)

Step III - estimation in the total sample and forecasting: We apply δ∗ and (16)
on the total sample 1, 2, . . . , T . Likewise, the optimal penalizing parameter for τ is obtained
according to the AICc criteria. As a result, we can employ the estimated model to forecast
the expected asset return at time T + 1.

After conducting our time-series return forecasting for all assets in the portfolio, we
obtain the expected asset returns vector µ̂F , thereby replacing related components in the
Bayes-Stein model. A graphical representation of this approach is presented in Figure 4,
where critical financial time-series information about asset returns, including economic vari-
ables and lagged component returns, are combined as predictors for asset returns and inputs
of our TW-ENet approach, and r1,T+1, r2,T+1, · · · , rN,T+1 and µ̂F,T+1 denote individual return
forecasting for N assets and expected asset returns vector at time T + 1, respectively.

15This error function is borrowed from Wang, Hao and Wu (2021).
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Figure 4: Graphical Representation of the Time-series Return Forecasting

Economic Variables

Lagged Component Returns

Predictors xd,T , · · · , xD,T

r1,T+1

r2,T+1

··
·

rN,T+1

µ̂F,T+1

3.3 Improved Calibration of the Shrinkage Factor gBS

Now we consider to further refine the Bayes-Stein mean estimator by improving the calibra-
tion of the shrinkage factor from the standpoint of grouping assets based on their different
characteristics. Specifically, we propose an advanced clustering combination strategy - the
hybrid double selective clustering combination (HDS-CC) technique, to capture assets’ indi-
vidual differences and provide shrinkage factors customized to distinct asset groups. Finally,
we establish a four-stage grouped Bayes-Stein shrinkage method. To introduce our approach,
we first discuss the motivation behind involving clustering analysis and clustering combina-
tion in the Bayes-Stein model for improving the shrinkage factor, and then we elaborate on
our proposed strategy.

In the light of Mynbayeva, Lamb and Zhao (2022), when applying shrinkage estimators
to homogeneous asset subsets with indistinguishable mean returns or variances, one can
create more robust portfolios than the vanilla Markowitz optimization and outperform the
1/N rule. Inspired by their work, a valuable endeavor for improving the shrinkage factor
is partitioning assets into distinct subsets with homogeneous characteristics and allocating
specific shrinkage factors to them. Additionally, asset returns exhibit grouped heterogeneity
(Cong et al., 2022) and assets with similar idiosyncrasies are prone to appear co-movement
and exhibit similar price behaviors (Herskovic et al., 2016), which also signifies the necessity
of dividing assets before employing the Bayes-Stein model. Therefore, we herein advocate
using clustering analysis, a type of unsupervised machine learning that can divide a collection
of assets into subgroups based on their features. That is to say, assets with a high degree
of similarity are partitioned into one group, where assets are more likely to have similar
performance. As a result, generated shrinkage factors for multiple asset subsets can capture
individual differences of assets and, simultaneously, retain the time-varying feature.
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Furthermore, though many studies have exploited clustering algorithms for financial
time series analysis or portfolio optimization (e.g., Tola et al., 2008; Dias, Vermunt and
Ramos, 2015), the choice of clustering methods in their studies is arbitrary. Moreover,
a single clustering algorithm cannot guarantee stability and robustness. So, we further
introduce a clustering combination technique, which gathers multiple base clustering results
to provide a consensus output, effectively increasing the accuracy, stability, robustness, and
consistency of clustering (Strehl and Ghosh, 2002).16 To the best of our knowledge, our
study is the first to incorporate the idea of clustering combination into shrinkage models for
portfolio selection.

General clustering combination: Typically, the clustering combination technique
encompasses two steps. In the first step, we run different clustering algorithms, or the same
algorithm with different initialization or parameters, to generate multiple clustering results,
also known as base clusterings. Let X = {x1,x2, . . . ,xN} ⊂ Rp represent the data set
of N assets in a p-dimension feature space. In this paper, we build the feature space by
return-based characteristics of assets, namely historical mean returns, volatility, skewness,
and kurtosis. A specific clustering algorithm will partition the data set into K clusters,
which can be represented as a label factor vector denoted by λ ∈ NN (Strehl and Ghosh,
2002). The label factor vector divides the asset component xi into the kth cluster, where
k ∈ {1, 2, . . . , K}. Figure 5 gives an example of the label factor vectors for four different
base clusterings of four assets partitioned into up to three clusters.

Figure 5: Base Clusterings of 4 Assets

λ(1) λ(2) λ(3) λ(4)

x1 1 1 1 1
x2 2 1 1 2
x3 2 2 2 3
x4 3 2 3 3

In the second step, the base results of the first step are combined to yield the final clusters
by clustering combination methods.17 Generally, the clustering combination function Γ can

16Clustering combination technique is also called cluster ensembles or consensus clustering, introduced by
Strehl and Ghosh (2002) (with over 5600 Google citations as of December 2022).

17Various clustering combination methods have been proposed in the computer science field, which is out
of the scope of this paper.
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be defined as:

Γ :
{
λ(b) | b ∈ {1, . . . , D}

}
→ λ∗ (19)

where λ(b) denotes the label factor vector of the bth base clustering results, λ∗ represents the
final label factor vector, and D is the number of base clusterings.

Further, Topchy, Jain and Punch (2005) conclude that the accuracy and diversity of
base clusterings are crucial to the performance of the clustering combination. Therefore, in
contrast to the existing studies about applications of general clustering ensemble, we employ
the same clustering algorithm with different initialization and other clustering algorithms
to improve the diversity and accuracy of base clusterings. Specifically, we propose a hybrid
double selective clustering combination (HDS-CC) technique to obtain final subgroups of
assets, thereby forming a four-stage grouped Bayes-Stein shrinkage approach.

Stage I - enhanced base clusterings with the same algorithm: It has been
well-noticed that some clustering algorithms are susceptible to randomly selected initial pa-
rameters. For example, the outputs of K-means clustering are vulnerable to different initial
centers. This situation is also seen in other clustering models, such as Spectral clustering
and the Gaussian mixture model (GMM). To refine the results of such methods, we pro-
pose the following double selective clustering combination algorithm concerning the quality
and diversification of base clusterings. Note that it is flexible and applicable to simultane-
ously enhance base clusterings of several clustering methods in this stage. Additionally, for
simplicity, we only employ K-means in Stage I.18

First, we select base clusterings of high intra-cluster similarity and low inter-cluster
similarity, and discard the remaining to maintain clustering quality. To mathematically
measure the performance of base clusterings, we introduce the Calinski-Harabasz score19

denoted by CH, given as follows:

CH =

∑K
k=1 nk ∥ck − c∥2∑K

k=1

∑nk

i=1 ∥xi,k − ck∥2
· N −K

K − 1
, (20)

where K is the number of clusters of a base clustering, N is the total number of assets, c is
the global centroid of all assets, nk and ck are the number of assets and centroid in the kth

18In this stage, we run K-means many times to produce base clusterings.
19There are various clustering quality metrics such as Silhouette coefficient, Davies-Bouldin index, etc.

Since they play similar roles, we only use the Calinski-Harabasz score for simplicity.

25



cluster, respectively, and xi,k represents the ith asset in the kth cluster.
After obtaining quality scores of all base clusterings, we can get a quality set Squality

with a base clusterings by a threshold, denoted by
{
λ(1), . . . ,λ(a)

}
. We call this process

“first filtering”.
Second, to assess the diversification of base clustering, Strehl and Ghosh (2002) suggest

using mutual information and normalizing it ranging from 0 to 1, which can measure the
statistical information shared by two label factor vectors of base clusterings, given in the
following proposition.

Proposition 2: Denoting two label factor vectors by λ(p) and λ(q), their normalized
mutual information Φ(NMI)

(
λ(p),λ(q)

)
is determined by

Φ(NMI)
(
λ(p),λ(q)

)
=

∑k(p)

h=1

∑k(q)

f=1 nh,f log

(
N ·nh,f

n
(p)
h n

(q)
f

)
√(∑k(p)

h=1 n
(p)
h log

n
(p)
h

N

)(∑k(q)

f=1 n
(q)
f log

n
(q)
f

N

) , (21)

where n(p)
h and n

(q)
f represent the number of assets in the cluster Ch of λ(p) and cluster Cf

of λ(q), respectively. nh,f denotes the number of assets appearing in the cluster Ch and Cf

simultaneously. N is the number of all assets.

Thus, the average normalized mutual information m(q) of the base clustering λ(q) can
be computed by

m(q) =
1

a− 1

a∑
p=1,p ̸=q

ΦNMI
(
λ(p),λ(q)

)
, q = 1, . . . , a. (22)

Following Zhou and Tang (2006), the weight for λ(q) is defined as:

w(q) =
m(q)∑a
q=1m

(q)
. (23)

By setting a threshold 1
a
, selected clusterings form a combination set Scombination (this
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process is called “second filtering”), determined by

Scombination =

{
q | w(q) ≥ 1

a
, 1 ≤ q ≤ a

}
. (24)

Finally, the final label λi of asset i is obtained by weighted voting:

λi = argmax
l∈{1,...,K}

∑
q∈Scombination

w(q) · I
(
λ
(q)
i = l

)
. (25)

Consequently, we produce an enhanced base clustering of K-means. Here is the illus-
tration of the double selective clustering combination algorithm.

Algorithm: double selective clustering combination algorithm
Input: B base clusterings of N assets, quality score threshold sthr

Output: final clustering λ∗

1 for b = 1 to B do
2 calculate the quality score CHb

3 “first filtering”: build the quality set Squality = {b | CHb ≥ sthr, 1 ≤ b ≤ B}, with a

base clusterings
4 for q ∈ Squality do
5 calculate the average normalized mutual information m(q) for the base clustering

λ(q)

6 for q ∈ Squality do
7 compute the weight w(q) of the base clustering λ(q)

8 “second filtering”: build the combination set Scombination =
{
q | w(q) ≥ 1

a
, 1 ≤ q ≤ a

}
9 for i = 1 to N do

10 obtain the final label λi of asset i by weighted voting with the combination set
Scombination

11 return final clustering λ∗

Stage II - base clusterings with different algorithms: In Stage II, we apply
three other well-established clustering methods as the base algorithms, namely Hierarchical
clustering, Spectral clustering, and Fuzzy c-means.20 As a result, we can generate three

20Since clustering combination is flexible on clustering algorithms, we apply three algorithms for simplicity.
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algorithm-specific base clusterings in this stage.
Stage III - clustering combination and grouped shrinkage: In Stage III, we

combine four base clusterings yielded by previous stages to gain final results via the dou-
ble selective combination technique proposed in Stage I. Since we produce an enhanced base
clustering by the same algorithm in Stage I and ordinary base clusterings with different algo-
rithms in Stage II, and apply the selective combination technique twice 21, this methodology
is “hybrid”. It turns out that assets are divided into clusters with high intra-cluster similarity
and low inter-cluster similarity. So assets that belong to the same group are allocated the
same shrinkage factor, whereas assets that belong to different groups are assigned different
shrinkage factors. The Bayes-Stein mean estimator of an individual group k is given as
follows:

µ̂GBSk
= (1− gk) µ̂Fk

+ gkµGFk
1, (26)

where k ∈ {1, . . . , K} denotes the index of clustering groups and gk represents the cor-
responding grouped shrinkage factor. µ̂Fk

and µGFk
are produced by the methodology of

Section 3.2.
Stage IV - grouped shrinkage mean estimators aggregating: Finally, in Stage

IV, the estimated mean vectors of all subgroups are aggregated to generate a mean returns
vector of all assets, given as follows:

µ̂GBS = aggregating (µ̂GBSk
) , k ∈ {1, . . . , K}. (27)

For illustration, Figure 6 depicts the workflow of the grouped Bayes-Stein shrinkage
approach. Compared with the conventional scheme for calculating the shrinkage factor in
the Bayes-Stein model, the advantages of the grouped Bayes-Stein shrinkage approach are
twofold. First, the hybrid double selective clustering combination (HDS-CC) strategy pro-
duces highly accurate and robust clusters concerning the time-series characteristics of assets
(historical mean returns, volatility, skewness, and kurtosis). Therefore, separately apply-
ing the Bayes-Stein shrinkage to different groups is more reasonable. Hence, the grouped
Bayes-Stein shrinkage approach generates representative shrinkage factors appropriate to
each cluster of assets, which effectively accounts for individual differences between groups
of assets. Second, the grouped Bayes-Stein shrinkage approach still employs the conven-

21The number of base clustering in Stage III is limited, so we discard the “filtering” process in this stage.
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tional mathematical method of the Bayes-Stein model to determine the shrinkage factor
for different subgroups of assets. This strategy takes full advantage of the interpretability
and accuracy of the conventional mathematical approach and retains the shrinkage factor’s
time-varying feature.

Figure 6: Grouped Bayes-Stein Shrinkage Approach
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3.4 Improved Estimation of the Inverse Covariance Matrix Σ̂−1
BS

The evidence shown in Section 2 demonstrates that the traditional Bayes-Stein model calcu-
lates the sample-based covariance matrix first and then its reverse, which brings estimation
errors that impair portfolio performance. This section provides an intuitive and far more
direct method for improving the inverse covariance matrix estimation. To introduce our
technique, we discuss the asset allocation interpretation of the sparse inverse covariance
matrix and its Gaussian graphical modeling meaning, followed by the presentation of the
graphical adaptive Elastic Net method.

3.4.1 Gaussian Graphical Modeling of the Inverse Covariance Matrix

The proceeding part explains why we seek to obtain a sparse estimator of the inverse covari-
ance matrix. First, we decompose the covariance matrix Σ of N assets as follows:

Σ =

[
σ2
1 m′

m M

]
, (28)

where the first element of Σ, σ2
1, is the variance of the first asset. m and its transpose m′

are an N − 1 × 1 column vector and an 1 × N − 1 row vector, respectively, indicating the
first asset’s covariances with each other N − 1 assets. The square matrix M represents the
covariance matrix of the remaining N−1 assets. Similarly, we can decompose the covariance
matrix with of all other N − 1 assets. Further, the inverse covariance matrix Σ−1 is given
as follows:

Σ−1 =

[
(σ2

1 −m′M−1m)
−1 − (σ2

1 −m′M−1m)
−1

m′M−1

− (σ2
1 −m′M−1m)

−1
M−1m M−1 + (σ2

1 −m′M−1m)
−1

M−1mm′M−1

]
, (29)

In the light of Stevens (1998), the first row of the inverse covariance matrix Σ−1 is
closely linked to a multivariate regression function that regresses the return of the first asset
on those of all other assets:

R1,t = a1 +
N∑
n=2

β1nRn,t + ϵ1,t, t = 1, . . . , T, (30)

where the regression coefficients can be indicated by an 1×N−1 row vector β1 = (β12, . . . , β1N),
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equal to m′M−1 (see also Coqueret and Guida, 2020). In addition, we can further analyze
the relationship between ϵ1,t and Σ−1 according to the following proposition.

Proposition 3: The variance of ϵ1,t, denoted by σ2
ϵ1

, is equivalent to σ2
1 −m′M−1m.

Consequently, the first row of Σ−1 can be expressed as follows:

[
1
σ2
ϵ1

−β12
σ2
ϵ1

· · · −β1N
σ2
ϵ1

]
. (31)

As a result, the inverse covariance matrix Σ−1 is determined by:



1
σ2
ϵ1

−β12
σ2
ϵ1

· · · −β1N
σ2
ϵ1

−β21
σ2
ϵ2

1
σ2
ϵ2

· · · −β2N
σ2
ϵ2

· · · ·
· · · ·
· · · ·

−βN1

σ2
ϵN

−βN2

σ2
ϵN

· · · 1
σ2
ϵN


. (32)

Moreover, the optimal weights of a vanilla mean-variance portfolio are calculated by
1
λ
Σ−1µ, so the holdings of the first asset hinge on 1

λσ2
ϵ1

(
µ1 −

∑N
n=2 β1nµn

)
. Hence, the ith

row of the inverse covariance matrix implies the hedging relationship of the ith asset with
the remaining assets, where the other N − 1 assets hedge the ith asset in the portfolio.

Additionally, Goto and Xu (2015) demonstrate that constraining the number of assets
for hedging can make it more reliable and stable, thereby offering significant out-of-sample
portfolio performance. This finding is called ”sparse hedging”, represented by a sparse inverse
covariance matrix, in which some off-diagonal elements are zero. Moreover, each off-diagonal
element of the inverse covariance matrix prescribes the partial correlation of a pair of assets,
so the underlying structure of the inverse covariance matrix is sparse when some assets intend
to be conditionally independent. Therefore, it is desirable to impose sparsity restrictions on
the inverse covariance matrix to improve its estimation.

Furthermore, the sparse inverse covariance matrix estimation is akin to Gaussian graph-
ical modeling. Assuming returns of N risky assets Rt are independent and identically
distributed (i.i.d) and follow a multivariate normal distribution Rt ∼ NID(µ,Σ) where
t = 1, . . . , T , the sparse structure of Σ−1 can be illustrated by an undirected graph with
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nodes and edges, in which the nodes are the N risky assets, and the connecting edges be-
tween matching pairs of assets represent partial correlation that are non-zero off-diagonal
elements of the inverse covariance matrix. The absence of a link between two nodes implies
their conditional independence given the remaining assets. The objective of graphical mod-
eling is to identify the edges representing the non-zero off-diagonal elements of the inverse
covariance matrix, which can be defined as follows:

E = {(i, j) : asset i and j are dependent given remaining assets, 1 ≤ i, j ≤ N} . (33)

For illustration, a four-asset inverse covariance matrix is presented in Figure 7, where
four graph nodes are composed of all assets, and five edges between nodes represent non-zero
off-diagonal elements of the inverse covariance matrix. There is no edge between assets one
and four because they are conditionally independent.

Figure 7: Undirected Graph of Four Assets

asset 1 asset 2

asset 3 asset 4

Further, to achieve Gaussian graphical modeling, a fascinating endeavour is to employ
regularization on the maximum likelihood estimation of the inverse covariance matrix, indi-
cated in the following proposition.

Proposition 4: Denoting the inverse covariance matrix by Θ (also called the precision
matrix) and the sample covariance matrix by S, the log-likelihood function L is determined
by

L ∝ {log |Θ| − trace (SΘ)}, (34)
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where log |Θ| is the log value of the matrix determinant, and trace(SΘ) indicates the matrix
trace.

Among regularization techniques, the L1, or LASSO penalty, is most widely used in
the portfolio management literature. For instance, Goto and Xu (2015) introduce the L1-
penalty to generate a sparse estimation of the precision matrix for the mean-variance portfolio
optimization, where the specific algorithm, graphical LASSO, is applied. The mathematical
formulation is given by

Θ̂G = argmax
Θ

{log |Θ| − trace(SΘ)− α∥Θ∥1}, (35)

where ∥Θ∥1 is L1 norm (the summation of the absolute values of the elements of Θ), and α
represents a non-negative regularization parameter.

Generally, graphical LASSO leverages LASSO’s capability to achieve sparse graphical
modeling of the inverse covariance matrix by taking advantage of the L1 penalty. However,
the conventional LASSO approach has two main limitations in practice (Zou and Hastie,
2005). First, it arbitrarily picks a single variable from a group of high-correlated variables
instead of selecting them all. In addition, the number of variables selected by LASSO is
bounded by the number of observations. Consequently, the drawbacks inherent in LASSO
are transformed into the graphical LASSO algorithm when conducting Gaussian graphi-
cal modeling of the inverse covariance matrix. The restrictions mentioned above regarding
LASSO in the context of inverse covariance matrix estimation of asset returns equate to
restricting the number of edges between the respective pairs of assets in the related graph
and selecting only a few from grouped assets. Moreover, as the variables chosen by the con-
ventional LASSO technique are not stable over time, the structure of the Gaussian graphical
model generated by the graphical LASSO algorithm is unstable, harming the model inter-
pretation. Therefore, it is necessary to improve the graphical LASSO algorithm further to
refine the inverse covariance matrix estimation, which is reported in the next section.

3.4.2 A Graphical Adaptive Elastic Net Algorithm for the Inverse Covariance
Matrix Estimation

Using LASSO variants to remedy issues of the graphical LASSO algorithm is natural and
applicable, thereby forming a better strategy for graphical modeling. However, despite
improvements over LASSO, they have so far received limited attention from the portfolio
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management literature.
Besides, among LASSO variants, adaptive Elastic Net is an attractive alternative for

variable selection and parameter estimation with the oracle property (Zou and Zhang, 2009).
Herein we propose the graphical adaptive Elastic Net algorithm for the sparse inverse covari-
ance matrix estimation. To the best of our knowledge, we are the first to involve the adaptive
Elastic Net in Gaussian graphical modeling. Moreover, on top of solving the problems of the
graphical LASSO, desirable properties of the graphical adaptive elastic net algorithm can also
bring other benefits to the process of graphical modeling. For example, this method enables
different shrinkage to elements of the inverse covariance matrix, which is more appropriate
for the different partial correlations between assets.

Essentially, adaptive Elastic Net is a blend of the adaptive LASSO and Elastic Net. By
integrating it into the inverse covariance matrix estimation, the proposed graphical adaptive
Elastic Net (GA-ENet) approach is given as follows:

Θ̂G = argmax
Θ

log |Θ| − trace(SΘ)− ϕ1

N∑
i=1

N∑
j=1;j ̸=i

ωij |θij | − ϕ2

N∑
i=1

N∑
j=1;j ̸=i

θ2ij

 , (36)

where ϕ1 and ϕ2 denotes the non-negative L1 penalizing parameter (LASSO) and L2 pe-
nalizing parameter (ridge), respectively. ωij represents the non-negative weighting factor
(adaptive lasso) for θij. Following the study of Zou and Zhang (2009), ωij is determined
by
∣∣−βi,j/σ2

ϵi

∣∣−ψ with ψ > 0, where −βi,j/σ2
ϵi

is obtained from (32) by the corresponding
ordinary least squares (OLS) hedging regression.

From (36), it is clear that our GA-ENet approach is equivalent to the graphical Elastic
Net method when all elements in the inverse covariance matrix are imposed the same penalty,
and is equal to the classical graphical LASSO when we further set ϕ2 to 0. Further, the block
coordinate descent scheme implemented in graphical LASSO suffices to solve (36).

Following the study of Friedman, Hastie and Tibshirani (2008), letting W be the esti-
mate of Σ, we decompose W , Θ, S as follows:

W =

(
W11 w12

w′
12 w22

)
, Θ =

(
Θ11 θ12

θ′
12 θ22

)
, S =

(
S11 s12

s′12 s22

)
. (37)

Moreover, the sub-gradient condition of (36) is:

Θ−1 − S − ϕ1ωΓ− 2ϕ2Θ = 0, (38)
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where Γ is a N × N matrix with elements γij = sign (θij) if θij ̸= 0, else γij ∈ [−1, 1] if
θij = 0. ω’s elements are ωij.

Then the upper right block of (38) is:

w12 − s12 − ϕ1ω12Γ12 − 2ϕ2θ12 = 0. (39)

Since WΘ = I, we can get the following expression:

(
W11 w12

w′
12 w22

)(
Θ11 θ12

θ′
12 θ22

)
=

(
I 0

0′ 1

)
. (40)

Then we have: 
W11Θ11 +w12θ

′
12 = I,

W11θ12 +w12θ22 = 0,

w′
12Θ11 + w22θ

′
12 = 0′,

w′
12θ12 + w22θ22 = 1.

(41)

From (41), w12 = −W11
θ12
θ22

. Let b = −θ12
θ22

. Substituting w12 and b into (39), we have:

W11b− s12 − ϕ1ω12Γ12 + 2ϕ2bθ22 = 0. (42)

(42) is the same as the form of the sub-gradient of the penalized loss function for a linear
regression model, which means here we can apply the method that addresses the penalized
linear regression. Thus, the coordinate descent strategy is employed to obtain the optimal
b. Letting V = W11 and u = s12, the updating form is given as follows:

bj =


uj−

∑N−1
k ̸=j Vjkbk−ϕ1ωj

Vjj+2ϕ2θ22
, uj −

∑N−1
k ̸=j Vjkβk > ϕ1ωj,

0, −ϕ1ωj ≤ uj −
∑N−1

k ̸=j Vjkβk ≤ ϕ1ωj,
uj−

∑N−1
k ̸=j Vjkbk+ϕ1ωj

Vjj+2ϕ2θ22
, uj −

∑N−1
k ̸=j Vjkβk < −ϕ1ωj.

(43)

Consequently, after each block-update22, we can get the optimal b, thereby updating
22The block-update represents the elements update of a partitioned matrix also referred as a block matrix.
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w12 = W11b, θ22 = 1
w22−w′

12b
, θ12 = −bθ22. Further, after N times of block-update, the

wholly updated W and Θ are generated. By checking convergence (the absolute value of
the largest difference between elements of two subsequent updates of W is smaller than a
predefined threshold value), we can confirm whether the block coordinate descent strategy
proceeds. Here is a description of the graphical adaptive Elastic Net (GA-ENet) algorithm.

Algorithm: graphical adaptive Elastic Net
Input: Sample covariance matrix S calculated by historical samples of asset

returns, threshold h, penalizing parameters λ1 and λ2, weighting factor
matrix ω obtained by row-by-row hedging regressions

Output: precision matrix Θ

1 Initial value: W = S, Θ = S−1

2 for j = 1, 2, . . . , N, 1, 2, . . . N, . . . do
3 Iteratively update W and Θ with the block coordinate descent algorithm until

convergence.
4 return the final Θ

4 Empirical Studies
In this section, we empirically compare our generalized Bayes-Stein framework’s out-of-
sample performance to that of the 1/N asset allocation rule on various datasets.

4.1 Data and Models

Following DeMiguel, Garlappi and Uppal (2009), among others, we employ similar datasets
containing monthly value-weighted excess returns (over the 1-month T-bill return). They
are listed in Table 4 and described in Appendix B of the Online Supplementary Appendix.
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Table 4: Data Description

Data N Time Abbreviation

10 industry portfolios 10 1963.06-2021.12 Ind10
20 size and book-to-market portfolios

and the US equity MKT
21 1963.06-2021.12 FF21

20 size and book-to-market portfolios
and the MKT, SMB, and HML portfolios

23 1963.06-2021.12 FF23

20 size and book-to-market portfolios
and the MKT, SMB, HML, and UMD portfolios

24 1963.06-2021.12 FF24

25 size and book-to-market portfolios 25 1963.06-2021.12 FF25
100 size and book-to-market portfolios 100 1963.06-2021.12 FF100BM

100 size and operating profitability portfolios 100 1963.07-2021.12 FF100OP
100 size and investment portfolios 100 1963.07-2021.12 FF100INV

Upon these datasets, we construct monthly rebalanced portfolios for a mean-variance
investor who allocates capital between risky assets and the risk-free rate in the pursuit of
expected utility maximization.23 In particular, we impose non-short-sale constraints and
variance-based constraints24 (VBCs) of Levy and Levy (2014) on the asset weights to lessen
further the adverse effects of estimation errors from the input parameters. These constraints
are commonly utilized by previous studies (see, e.g., Board and Sutcliffe, 1994; Platanakis,
Sutcliffe and Ye, 2021).

Additionally, the monthly portfolio rebalancing process leads to changes in asset weights
during the out-of-sample period and incurs transaction costs. As a result, we evaluate the
portfolio performance taking into account these expenses. Following DeMiguel, Martín-
Utrera and Nogales (2015), we add a penalty term for transaction costs and set the overall
objective function integrating our generalized Bayes-Stein model as follows:

max
wGBS

{
w′

GBSµ̂GBS −
λ

2
w′

GBSΣ̂GBSwGBS −
δ

2
∆w′

GBSΣ̂S∆wGBS

}
, (44)

23Denoting N as the number of risky assets and wi as the weight of risky asset i, 1 −
∑N

i=1 wi is the
portfolio weight allocated to the risk-free asset (1-month T-bill).

24∣∣wi − 1
N

∣∣ σi

σ̄ ≤ η, ∀i, where σi denotes the standard deviation of risky asset i and σ̄ is the average standard
deviation of all risky assets. Following Platanakis, Sutcliffe and Ye (2021), we set the VBCs parameter η to
0.15.
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where wGBS indicates the portfolio weights vector, and µ̂GBS and Σ̂GBS represent the mean
returns vector and the covariance matrix, produced by our generalized Bayes-Stein model,
respectively. λ denotes the risk aversion coefficient, and we use λ = 1, λ = 3, and λ = 5

to represent aggressive, moderate, and conservative investors, respectively.25 Besides, the
term δ

2
∆w′

GBSΣ̂S∆wGBS represents a quadratic transaction cost, where δ is the transaction
cost parameter26 and ∆wGBS is the asset weights change vector. For example, the weights
change vector at time t is calculated by

∆wGBS,t = wGBS,t −w+
GBS,t−1, (45)

where w+
GBS,t−1 denotes the asset weights vector at the end of t− 1. So, the transaction cost

taking out of the portfolio return at time t is measured by δ∆w′
GBS,tΣ̂S∆wGBS,t.

Moreover, to facilitate the implementation of the proposed methods in our generalized
Bayes-Stein framework, we employ an expanding estimation window27, where models are
built on monthly data available up to month t for computing the input parameters and
corresponding optimal portfolios at month t+1. Note that the estimation of mean returns is
slightly different from that of the covariance matrix. This is because we need one more month
of asset returns as the predictors in our TW-ENet approach’s design. For illustration, we use
the data samples from June 1963 to June 1983 to estimate portfolio inputs and determine
optimal asset weights in the first out-of-sample time point, July 1983. In this case, we need
data from June 1963 to June 1983 to estimate the expected asset returns via the TW-ENet
approach, while from July 1963 to June 1983 to estimate the covariance matrix, or its inverse.
This estimation and the monthly portfolio rebalancing process are repeated until the end of
the entire data sample. Ultimately, we can obtain monthly out-of-sample portfolio excess
returns of our generalized Bayes-Stein framework.

In a similar vein, we also rebalance our benchmark, the “naive” equally-weighted (1/N)
asset allocation rule that does not need any parameter estimation and optimization, and
equally distributes capital among different underlying assets.

25Results of other risk aversion parameters are presented in Appendix C of the Online Supplementary
Appendix.

26No transaction costs exist when δ = 0. Following DeMiguel, Martín-Utrera and Nogales (2015), we set
δ = 3× 10−7 in the main paper, while other values are set for robustness checks.

27We use 20-year and 40-year expanding estimation windows in this paper.
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4.2 Performance Measures

We apply two different measures to analyze the out-of-sample performance of various port-
folio strategies. First, we compare these models’ out-of-sample performance using the annu-
alized out-of-sample Sharpe ratio (SR), calculated by

SR = µp/σp, (46)

where µp and σp denote the annualized out-of-sample expected portfolio excess returns and
the annualized out-of-sample standard deviation of portfolio excess returns, respectively.

Second, we compute the annualized certainty equivalent return (CER) as follows:

CER = µp −
λ

2
σp

2, (47)

where λ represents the investor’s risk aversion.
Note that we employ the same approach as DeMiguel, Garlappi and Uppal (2009) to

test the statistical difference of Sharpe ratios and certainty equivalent returns between our
generalized Bayes-Stein framework and the 1/N rule.

4.3 Empirical Results

To evaluate the out-of-sample portfolio performance of our generalized Bayes-Stein frame-
work and its benchmark (1/N rule), we first exhibit their Sharpe ratios and certainty equiv-
alent returns without accounting for transaction costs in Table 5, and then report the results
considering transaction costs in Table 6. Moreover, to analyze the influence of the initial
expanding window length or the out-of-sample periods on the asset allocation models, we
use different initial expanding windows that lead to different out-of-sample periods when
presenting results.

For the case of no transaction costs, our generalized Bayes-Stein model outperforms the
1/N scheme in terms of Sharpe ratios and certainty equivalent returns in most datasets except
for Ind10 where their performances are comparable. More importantly, the performance
metrics differences between the two asset allocation models are substantial, and in general,
our generalized Bayes-Stein model surpasses the 1/N rule by more than 30%. For example,
in the dataset FF100INV under a 20-year expanding estimation window, our generalized
Bayes-Stein model attains the highest Sharpe ratio of about 0.74, which is about 35% higher
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than the 1/N rule with a Sharpe ratio of about 0.55. Notably, once the number of risky
assets increases to 100, our generalized Bayes-Stein model performs exceptionally well and is
much better than 1/N. In these large portfolios (FF100BM, FF100OP, and FF100INV), the
performance of the 1/N rule may be polluted by the high number of assets, which implies
the necessity and effectiveness of our improved shrinkage factor calibration approach based
on clustering analysis. Moreover, the edge of our generalized Bayes-Stein framework over
1/N is consistent in both the 20-year (the out-of-sample period covers from July 1983 to
December 2021) and 40-year (the out-of-sample period covers from July 2003 to December
2021) expanding estimation windows and robust to the values of risk aversion. Furthermore,
by examining the performance metrics’ statistical difference between our generalized Bayes-
Stein framework and 1/N, we find that our generalized Bayes-Stein framework is significantly
superior (at least the 10% significance level) regardless of the performance metrics in most
cases.

Moreover, we further assess the out-of-sample performance of our generalized Bayes-
Stein framework after taking into account transaction costs when measuring performance.
Likewise, in comparison with the 1/N strategy, our generalized Bayes-Stein framework can
significantly surpass it in most cases. Intuitively, transaction costs imposed on portfolio
returns will hurt performance. However, since we involve a transaction cost penalty term
in the objective function, the obtained optimal portfolio weights change accordingly, even
leading to results contrary to our intuition in some cases (i.e., better performance post-
transaction costs compared to pre-transaction costs), which is in line with the results shown
in Table 6.

Furthermore, our generalized Bayes-Stein model is a holistic framework that integrates
various well-designed machine learning techniques to enhance multiple aspects of the con-
ventional Bayes-Stein model. To verify the usefulness of different parts, we decompose our
generalized Bayes-Stein model into two sub-models, one that only includes the TW-ENet
approach (model 1) and another that does not have the TW-ENet method (model 2). Model
1 means we only modify the sample mean component (µ̂S) of the classical Bayes-Stein model
from a return forecasting perspective, whereas model 2 only involves our techniques for the
shrinkage factor calibration and the inverse covariance matrix estimation. Table 7 reports
the corresponding results.28 We find that, largely, both model 1 and model 2 can still sig-
nificantly outperform the 1/N rule in some cases. Hence, the machine learning methods
we develop each effectively boosts the original Bayes-Stein model. Most importantly, when

28Additional results are reported in Appendix C of the Online Supplementary Appendix.
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combining all methods (establishing the generalized Bayes-Stein model with models 1 and
2), we can attain a comprehensive model that provides more stable and superior performance
in all datasets.29

Therefore, though it is conceived hard to defeat the 1/N strategy (Ming and Zhou, 2022),
our empirical studies offer strong evidence supporting the conclusion that our generalized
Bayes-Stein portfolio optimization framework can improve the original Bayes-Stein model
and defeat the 1/N rule. To examine the robustness of our findings, we conduct a further
extension of this study by robustness checks in Section 5.

29Though the metric value of model 1 is slightly higher in some cases such as FF100BM and FF100INV,
the generalized Bayes-Stein model is more stable in most datasets.
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Table 5: SRs and CERs without TCs for Different Estimation Windows
Table 5 reports the out-of-sample yearly Sharpe ratios (SRs) and certainty equivalent returns (CERs) of the generalized Bayes-Stein framework
(GBS) and the naive equal weighted scheme (1/N) under various datasets (Ind10, FF21, FF23, FF24, FF25, FF100BM, FF100OP, and FF100INV)
for different risk aversion parameters (λ = 1, 3, 5) without considering transaction costs (TCs). The results of the 20-year (the out-of-sample
period covers from July 1983 to December 2021) and 40-year (the out-of-sample period covers from July 2003 to December 2021) expanding
estimation windows are exhibited in Panel A and Panel B, respectively. The results of significance tests of the performance differences (GBS vs
1/N) are put in the parenthesis, where *, **, and *** indicate a statistical significance at the 10%, 5%, and 1%-level, respectively.

Panel A: SRs and CERs without TCs for a 20-year expanding estimation window

Dataset

SRs CERs

λ = 1 λ = 3 λ = 5 λ = 1 λ = 3 λ = 5

GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N
Ind10 0.6719 0.6356 0.6789 0.6356 0.6753 0.6356 0.0883 (*) 0.0756 0.0667 0.0580 0.0455 0.0403
FF21 0.6205 (*) 0.5226 0.6224 (*) 0.5226 0.6270 (*) 0.5226 0.0902 (*) 0.0760 0.0620 (*) 0.0455 0.0354 (**) 0.0150
FF23 0.6467 (**) 0.5050 0.6448 (**) 0.5050 0.6392 (**) 0.5050 0.0904 (**) 0.0688 0.0645 (**) 0.0425 0.0387 (**) 0.0161
FF24 0.6510 (**) 0.5155 0.6603 (**) 0.5155 0.6727 (**) 0.5155 0.0886 (**) 0.0676 0.0658 (**) 0.0438 0.0446 (**) 0.0200
FF25 0.7122 (***) 0.5497 0.7112 (***) 0.5497 0.7121 (***) 0.5497 0.1066 (***) 0.0783 0.0773 (***) 0.0500 0.0492 (***) 0.0217
FF100BM 0.7317 (***) 0.3816 0.7229 (***) 0.3816 0.7178 (***) 0.3816 0.1185 (***) 0.0518 0.0824 (***) 0.0206 0.0473 (***) -0.0105
FF100OP 0.6797 0.5635 0.6772 (***) 0.5635 0.6722 (***) 0.5635 0.1104 (***) 0.0829 0.0743 (***) 0.0526 0.0383 (**) 0.0223
FF100INV 0.7401 (***) 0.5470 0.7378 (***) 0.5470 0.7359 (***) 0.5470 0.1172 (***) 0.0796 0.0842 (***) 0.0497 0.0515 (***) 0.0198

Panel B: SRs and CERs without TCs for a 40-year expanding estimation window

Dataset

SRs CERs

λ = 1 λ = 3 λ = 5 λ = 1 λ = 3 λ = 5

GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N
Ind10 0.7866 0.7518 0.7892 0.7518 0.7911 0.7518 0.1104 (**) 0.0915 0.0863 0.0736 0.0626 0.0558
FF21 0.6882 0.6238 0.6985 0.6238 0.7167 0.6238 0.1025 0.0965 0.0750 0.0638 0.0501 0.0311
FF23 0.7300 0.6049 0.7417 0.6049 0.7441 0.6049 0.1084 0.0882 0.0818 0.0594 0.0547 0.0307
FF24 0.6862 0.6124 0.6848 0.6124 0.7006 0.6124 0.0994 0.0854 0.0717 0.0597 0.0480 0.0339
FF25 0.8089 (***) 0.6322 0.8176 (***) 0.6322 0.8274 (***) 0.6322 0.127 (***) 0.0955 0.097 (***) 0.0647 0.0683 (***) 0.0340
FF100BM 0.8779 (***) 0.5169 0.8593 (***) 0.5169 0.8575 (***) 0.5169 0.1529 (***) 0.0783 0.1108 (***) 0.0443 0.0721 (***) 0.0104
FF100OP 0.7550 (**) 0.6552 0.7562 (**) 0.6552 0.7539 (**) 0.6552 0.1226 (**) 0.1016 0.0885 (**) 0.0693 0.0540 (**) 0.0370
FF100INV 0.8022 (**) 0.6508 0.7977 (**) 0.6508 0.7949 (**) 0.6508 0.1265 (**) 0.1001 0.0942 (**) 0.0683 0.0624 (**) 0.0366
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Table 6: SRs and CERs with TCs for Different Estimation Windows
Table 6 reports the out-of-sample yearly Sharpe ratios (SRs) and certainty equivalent returns (CERs) of the generalized Bayes-Stein framework
(GBS) and the naive equal weighted scheme (1/N) under various datasets (Ind10, FF21, FF23, FF24, FF25, FF100BM, FF100OP, and FF100INV)
for different risk aversion parameters (λ = 1, 3, 5) considering transaction costs (TCs). The results of the 20-year (the out-of-sample period
covers from July 1983 to December 2021) and 40-year (the out-of-sample period covers from July 2003 to December 2021) expanding estimation
windows are exhibited in Panel A and Panel B, respectively. The results of significance tests of the performance differences (GBS vs 1/N) are
put in the parenthesis, where *, **, and *** indicate a statistical significance at the 10%, 5%, and 1%-level, respectively.

Panel A: SRs and CERs with TCs for a 20-year expanding estimation window

Dataset

SRs CERs

λ = 1 λ = 3 λ = 5 λ = 1 λ = 3 λ = 5

GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N
Ind10 0.6664 0.6356 0.6604 0.6356 0.6548 0.6356 0.0892 (*) 0.0756 0.0648 0.058 0.0424 0.0403
FF21 0.6453 (**) 0.5226 0.6544 (**) 0.5226 0.6525 (**) 0.5226 0.0956 (**) 0.076 0.0677 (**) 0.0455 0.0392 (**) 0.015
FF23 0.6529 (**) 0.5050 0.6490 (**) 0.5050 0.6421 (**) 0.5050 0.0928 (**) 0.0688 0.0656 (**) 0.0425 0.0388 (**) 0.0161
FF24 0.6375 (*) 0.5155 0.6504 (**) 0.5155 0.6626 (**) 0.5155 0.0875 (**) 0.0676 0.0646 (**) 0.0438 0.0430 (**) 0.0200
FF25 0.7067 (***) 0.5497 0.7027 (***) 0.5497 0.7049 (***) 0.5497 0.1078 (***) 0.0783 0.0765 (***) 0.0500 0.0475 (***) 0.0217
FF100BM 0.7096 (***) 0.3816 0.7057 (***) 0.3816 0.7065 (***) 0.3816 0.1152 (***) 0.0518 0.0793 (***) 0.0206 0.0453 (***) -0.0105
FF100OP 0.6614 (**) 0.5635 0.6644 (**) 0.5635 0.6612 (**) 0.5635 0.1075 (***) 0.0829 0.0719 (**) 0.0526 0.0362 (**) 0.0224
FF100INV 0.7242 (***) 0.5470 0.7240 (***) 0.5470 0.7259 (***) 0.5470 0.1138 (***) 0.0796 0.0816 (***) 0.0497 0.0498 (***) 0.0198

Panel B: SRs and CERs with TCs for a 40-year expanding estimation window

Dataset

SRs CERs

λ = 1 λ = 3 λ = 5 λ = 1 λ = 3 λ = 5

GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N
Ind10 0.7613 0.7518 0.7531 0.7518 0.7524 0.7518 0.1091 (*) 0.0915 0.0819 0.0736 0.0565 0.0558
FF21 0.7102 0.6238 0.7274 0.6238 0.7413 0.6238 0.1088 0.0965 0.0808 0.0638 0.0537 0.0311
FF23 0.7476 (*) 0.6049 0.7580 (*) 0.6049 0.7612 (*) 0.6049 0.1138 (*) 0.0882 0.0856 (*) 0.0594 0.0573 (*) 0.0307
FF24 0.6834 0.6124 0.6855 0.6124 0.7025 0.6124 0.1007 0.0854 0.0724 0.0597 0.0481 0.0339
FF25 0.7802 (***) 0.6322 0.7871 (***) 0.6322 0.8004 (***) 0.6322 0.1253 (***) 0.0955 0.0930 (***) 0.0647 0.0633 (***) 0.0340
FF100BM 0.8529 (***) 0.5169 0.8567 (***) 0.5169 0.8569 (***) 0.5169 0.1493 (***) 0.0783 0.1105 (***) 0.0443 0.0720 (***) 0.0104
FF100OP 0.7387 (*) 0.6552 0.7435 (*) 0.6552 0.7470 (*) 0.6552 0.1206 (**) 0.1016 0.0864 (*) 0.0693 0.0526 (*) 0.0370
FF100INV 0.8028 (**) 0.6508 0.8025 (**) 0.6508 0.809 (***) 0.6508 0.1252 (**) 0.1001 0.0945 (**) 0.0683 0.0650 (***) 0.0366
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Table 7: SRs and CERs with TCs for Model Decomposition
The generalized Bayes-Stein model (GBS) is decomposed into two sub-models, one that only includes the TW-ENet approach (model 1) and another
that does not have the TW-ENet method (model 2). Table 7 reports the out-of-sample yearly Sharpe ratios (SRs) and certainty equivalent returns
(CERs) of the two sub-models and the naive equal weighted scheme (1/N) under various datasets (Ind10, FF21, FF23, FF24, FF25, FF100BM,
FF100OP, and FF100INV) for different risk aversion parameters (λ = 1, 3, 5) considering transaction costs (TCs), which are exhibited in Panel A
and Panel B, respectively. The results are obtained under a 20-year expanding estimation window (the out-of-sample period covers from July 1983 to
December 2021). Significance tests of the performance differences (GBS-model 1 vs 1/N, GBS-model 2 vs 1/N) are put in the parenthesis, where *,
**, and *** indicate a statistical significance at the 10%, 5%, and 1%-level, respectively.

Panel A: SRs and CERs of GBS-model 1

Dataset

SRs CERs

λ = 1 λ = 3 λ = 5 λ = 1 λ = 3 λ = 5

GBS-model 1 1/N GBS-model 1 1/N GBS-model 1 1/N GBS-model 1 1/N GBS-model 1 1/N GBS-model 1 1/N
Ind10 0.6693 0.6356 0.6456 0.6356 0.6295 0.6356 0.0890 (*) 0.0756 0.0608 0.0580 0.0396 0.0403
FF21 0.6288 (*) 0.5226 0.6196 0.5226 0.6170 0.5226 0.0899 0.0760 0.0600 0.0455 0.0377 (*) 0.0150
FF23 0.5870 0.5050 0.5642 0.5050 0.5493 0.5050 0.0794 0.0688 0.0501 0.0425 0.0293 0.0161
FF24 0.5997 0.5155 0.6578 (*) 0.5155 0.6346 0.5155 0.0784 0.0676 0.0607 0.0438 0.0402 (*) 0.0200
FF25 0.6789 (***) 0.5497 0.693 (***) 0.5497 0.6952 (**) 0.5497 0.1005 (***) 0.0783 0.0723 (**) 0.0500 0.0483 (**) 0.0217
FF100BM 0.7183 (***) 0.3816 0.7311 (***) 0.3816 0.7299 (***) 0.3816 0.1161 (***) 0.0518 0.0827 (***) 0.0206 0.0526 (***) -0.0105
FF100OP 0.6593 (**) 0.5635 0.6952 (***) 0.5635 0.6699 (**) 0.5635 0.1061 (***) 0.0829 0.0754 (***) 0.0526 0.0439 (**) 0.0224
FF100INV 0.7418 (***) 0.5470 0.7388 (***) 0.5470 0.7414 (***) 0.5470 0.1156 (***) 0.0796 0.0825 (***) 0.0497 0.0549 (***) 0.0198

Panel B: SRs and CERs of GBS-model 2

Dataset

SRs CERs

λ = 1 λ = 3 λ = 5 λ = 1 λ = 3 λ = 5

GBS-model 2 1/N GBS-model 2 1/N GBS-model 2 1/N GBS-model 2 1/N GBS-model 2 1/N GBS-model 2 1/N
Ind10 0.6362 0.6356 0.6385 0.6356 0.6474 0.6356 0.0790 0.0756 0.0598 0.058 0.0417 0.0403
FF21 0.5823 (*) 0.5226 0.5867 (**) 0.5226 0.5883 (***) 0.5226 0.0917 (**) 0.0760 0.0571 (**) 0.0455 0.0244 (**) 0.015
FF23 0.5721 (**) 0.5050 0.5804 (***) 0.5050 0.5825 (***) 0.5050 0.0900 (***) 0.0688 0.0560 (**) 0.0425 0.0232 0.0161
FF24 0.5942 (**) 0.5155 0.5937 (***) 0.5155 0.5928 (***) 0.5155 0.0943 (***) 0.0676 0.0585 (**) 0.0438 0.0254 0.0200
FF25 0.5900 0.5497 0.5904 0.5497 0.5903 (*) 0.5497 0.0932 (**) 0.0783 0.0578 0.0500 0.0252 0.0217
FF100BM 0.5768 (***) 0.3816 0.5766 (***) 0.3816 0.5748 (***) 0.3816 0.0882 (***) 0.0518 0.0552 (***) 0.0206 0.0225 (***) -0.0105
FF100OP 0.5039 0.5635 0.5288 0.5635 0.5401 0.5635 0.0752 0.0829 0.0466 0.0526 0.0167 0.0224
FF100INV 0.5744 0.5470 0.5875 (**) 0.5470 0.5925 (***) 0.5470 0.0867 (**) 0.0796 0.0570 (**) 0.0497 0.0266 (**) 0.0198
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5 Robustness Checks
In this section, we test the generalized Bayes-Stein framework’s robustness and general ap-
plicability regarding time-series return forecasting techniques and the portfolio construction
design, as shown in Table 8. The detailed robustness check results are presented in Appendix
D of the Online Supplementary Appendix.

Table 8: Robustness Checks Description

Number Description
1 Check alternative time-series return forecasting techniques integrated

into the generalized Bayes-Stein framework
2 Check different transaction cost parameters
3 Check a 30-year expanding estimation window
4 Check a 20-year rolling estimation window

First, in the generalized Bayes-Stein framework, we enhance the sample and grand mean
by exploiting the predictability of asset returns with the help of the TW-ENet approach.
As various machine learning methods have been introduced to forecast expected returns, it
is necessary to validate the effectiveness or superiority of our TW-ENet in the generalized
Bayes-Stein framework. For simplicity, we use the ordinary least squares post LASSO ap-
proach (OLS-post LASSO), the combination Elastic Net method (C-ENet), and the Random
Forest method as benchmarks. C-ENet combines individual forecasts selected by Elastic Net,
and OLS-post Lasso conducts OLS estimation on predictors selected by the LASSO. They
are commonly used for return prediction of the aggregate market or market components in
existing literature (see, e.g., Rapach et al., 2019; Dong et al., 2022; Hou et al., 2022). No-
tably, the robustness check results verify the TE-ENet approach’s comparable performance
to other well-established methods and reflect the flexibility of our generalized Bayes-Stein
framework. This framework can easily integrate other advanced machine learning methods.

Moreover, we conduct additional studies concerning specific designs of our portfolio
construction. First, we further apply alternative transaction cost estimates to robustness
of our empirical findings. Second, we employ a 30-year expanding window. Finally, as
mentioned in Section 4, we provide the empirical results based on the expanding window
estimation in the main paper. To analyze the impact of window estimation methods, we
use a 20-year rolling estimation window for robustness checks. Importantly, according to
the results in Appendix D of the Online Supplementary Appendix, our generalized Bayes-
Stein framework can still beat the classical Bayes-Stein model and the 1/N rule under these
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different portfolio construction designs, which, to some extent, shows the stability of our
generalized Bayes-Stein framework.

6 Conclusions
This paper sets out to improve the classical Bayes-Stein portfolio optimization model that
performs poorly out of sample with well-designed machine learning techniques. To this
end, we comprehensively analyze the drawbacks inherent in the original Bayes-Stein model
with theoretical and empirical evidence and suggest corresponding machine learning meth-
ods concerning these key stylized facts. Our established holistic generalized Bayes-Stein
framework, integrating a wide variety of novel machine learning approaches we develop,
enjoys several desirable properties. First, model components of the original Bayes-Stein
model (the sample means vector and the grand mean) are upgraded by superior expected
asset returns estimation produced by the time-dependent weighted Elastic Net (TW-ENet)
approach. Second, this framework covers the individual differences of portfolio assets by
ameliorating the shrinkage factor measurement with a four-stage Bayes-Stein shrinkage ap-
proach based on a clustering ensemble method. Third, it extends the traditional Bayes-Stein
model with a shrinkage estimator of the inverse covariance matrix yielded by a graphical
adaptive Elastic Net (GA-ENet) approach. Most importantly, we find that these properties
of the generalized Bayes-Stein framework can be converted into portfolio gains, validated by
better out-of-sample performance compared with the 1/N portfolio allocation rule.

In general, therefore, it seems that our generalized Bayes-Stein framework can provide a
promising solution for optimal asset allocation, the central concern of institutional investors.
Moreover, we seek to refine and revitalize the traditional financial model by leveraging well-
tailored explainable machine learning techniques, generating portfolios with superior out-of-
sample performance. So, from a practical point of view, our study offers a new angle for
portfolio optimization. Instead of directly applying machine learning models off the shelf, we
carefully modify them concerning the specifics of the generalized Bayes-Stein model, which
may provide new insights for academics or real-world investors involving machine learning
in investment decisions.

However, some research limitations or directions are left for future research. First, the
asset scope for portfolio construction is limited in this study. We do not exploit and validate
our proposed generalized Bayes-Stein framework in a more practical investment environment,
e.g., the portfolio selection problem involving concrete stocks or other asset classes. Second,
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to our knowledge, this paper is the first to propose or introduce some novel machine learning
methods (e.g., the clustering ensemble strategy) in related finance literature. Hence, further
exploring these methods in other financial scenarios is meaningful. Third, considering their
lack of interpretability, we do not suggest other more advanced machine learning methods
in this paper (e.g., deep learning). Thus it is interesting to go back to the question covered
in this paper in the future with the evolution of machine learning.
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This online supplementary appendix presents proof of propositions introduced in Section
3 of the paper. It also describes various datasets used in the empirical studies, including
datasets taken as underlying assets for portfolio construction and many economic variables
used as predictors for expected asset returns. Moreover, it supplements additional results
not exhibited in the main paper, such as a complete investigation of the limitation of the
original Bayes-Stein model, portfolio performance for different risk aversion parameters, and
model decomposition under different expanding estimation windows. Further, it reports the
results of robustness checks about our generalized Bayes-Stein portfolio optimization mode
conducted in this paper.
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A Proof of Propositions
To rationally develop our generalized Bayes-Stein framework in Section 3, we suggest four
crucial propositions in this paper. In this appendix, we provide their proof.

A.1 Proof of Proposition 1

To prove this proposition, we simply prove the bias-variance decomposition of the mean
squared error between the mean estimator and the true mean of an individual asset as
follows:

E
(
(µ̂− µ)2

)
= E

(
(µ̂− E(µ̂) + E(µ̂)− µ)2

)
= E

(
(E(µ̂)− µ)2

)
+ E

(
(µ̂− E(µ̂))2

)
+ 2E((E(µ̂)− µ)(µ̂− E(µ̂))

= E
(
(E(µ̂)− µ)2

)
+ E

(
(µ̂− E(µ̂))2

)
+ 2(E(µ̂)− µ)(E(µ̂)− E(µ̂))

= E
(
(E(µ̂)− µ)2

)
+ E

(
(µ̂− E(µ̂))2

)
,

(A.1)

where E ((E(µ̂)− µ)2) and E ((µ̂− E(µ̂))2) denote the bias and variance of the individual
mean return estimator, respectively. As a result, we can obtain the bias-variance decompo-
sition of the vector µ̂ for generality, as shown in Proposition 1.

A.2 Proof of Proposition 2

For a standard multivariate regression model, denoted by Y = Xβ + ε, the statistical
measure R2 is given as follows:

R2 =
SSR

SST
= 1− ϵ′ϵ

Tσ2
Y

= 1− Y′Y − β̂′X′Xβ̂

Tσ2
Y

= 1− Y′Y −Y′Xβ̂

Tσ2
Y

. (A.2)

Moreover, the regression of (??) can be rewritten as follows:

R1 = a11+R−1β1 + ϵ1, (A.3)

where R−1 represents returns of all assets except the first one, and 1 denotes a T × 1 vector
of ones (T is the number of observations).

Here we can get Xβ̂ = a11+R−1β1 = a11+R−1M
−1m. Substituting it into the equation
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of R2, we have:

Tσ2
1R

2 = Tσ2
1 −R′

1R1 + â11
′R1 +R′

1R−1M
−1m. (A.4)

Let R̃1 and R̃−1 be the demeaned R1 and R−1. We can get the result as follows:

T
(
1−R2

)
σ2
1 = R′

1R1 − â11
′R1 −

(
R̃1 +

11′

T
R1

)′(
R̃−1 +

11′

T
R−1

)
M−1m

T
(
1−R2

)
σ2
1 = R′

1R1 − â11
′R1 − Tm′M−1m−R′

1

11′

T
R−1M

−1m.

(A.5)

Since â1 = 1′

T
(R1 −R−1M

−1m), we further obtain:

T
(
1−R2

)
σ2
1 = R′

1R1 −
(1′

TR1)
2

T
− Tm′M−1m(

1−R2
)
σ2
1 = σ2

1 −m′M−1m.

(A.6)

A.3 Proof of Proposition 3

Denoting two label factor vectors by λ(p) and λ(q), their normalized mutual information
Φ(NMI)

(
λ(p),λ(q)

)
is given as follows:

Φ(NMI)
(
λ(p),λ(q)

)
=

I(λ(p),λ(q))√
H(λ(p))H(λ(q))

, (A.7)

where I(λ(p),λ(q)) represents the mutual information between λ(p) and λ(q), and H(λ(p))

and H(λ(q)) are their entropy (a measurement that quantifies uncertainty).
SinceH(X) = −

∑
x∈X p(x) log p(x) and I(X,Y ) =

∑
y∈Y
∑

x∈X P(X,Y )(x, y) log
(
P(X,Y )(x,y)

PX(x)PY (y)

)
,
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we can get the following:

H(λ(p)) = −
k(p)∑
h=1

n
(p)
h

N
log

n
(p)
h

N

H(λ(q)) = −
k(q)∑
f=1

n
(q)
f

N
log

n
(q)
f

N

I(λ(p),λ(q)) =
k(p)∑
h=1

k(q)∑
f=1

nh,f
N2

log

(
N · nh,f
n
(p)
h n

(q)
f

)
,

(A.8)

where n(p)
h and n

(q)
f represent the number of assets in the cluster Ch of λ(p) and cluster Cf

of λ(q), respectively. nh,f denotes the number of assets appearing in the cluster Ch and Cf

simultaneously. N is the number of all assets.
As a result, we obtain the final normalized mutual information Φ(NMI)

(
λ(p),λ(q)

)
, given

as follows:

Φ(NMI)
(
λ(p),λ(q)

)
=

∑k(p)

h=1

∑k(q)

f=1 nh,f log

(
N ·nh,f

n
(p)
h n

(q)
f

)
√(∑k(p)

h=1 n
(p)
h log

n
(p)
h

N

)(∑k(q)

f=1 n
(q)
f log

n
(q)
f

N

) . (A.9)

A.4 Proof of Proposition 4

N Risky asset returns over a given time horizon T , assuming they are independent and
identically distributed (i.i.d), follow a multivariate normal distribution:

Rt ∼ NID(µ,Σ), t = 1, . . . , T. (A.10)

The probability density function (pdf) of a multivariate normal distribution is given by

f(R) =
1√

(2π)N |Σ|
exp

(
−1

2
(R− µ)′Σ−1(R− µ)

)
. (A.11)
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Then We can obtain the likelihood function by

T∏
t=1

f (Rt) =
T∏
t=1

1√
(2π)N |Σ|

exp

(
−1

2
(Rt − µ)′Σ−1(Rt − µ)

)
. (A.12)

So the log-likelihood function is:

log

(
T∏
t=1

f (Rt)

)
=

T∑
t=1

(
log
(
(2π)

−N
2

)
+ log

(
|Σ|

−1
2

)
− 1

2
(Rt − µ)′ Σ−1 (Rt − µ)

)
.

(A.13)
Then we have:

log

(
T∏
t=1

f (Rt)

)
∝

T∑
t=1

(
−1

2
log (|Σ|)− 1

2
(Rt − µ)′ Σ−1 (Rt − µ)

)
. (A.14)

Denote the inverse covariance matrix by Θ (as well as Σ−1), and it is also called a
precision matrix. Let Σ̂S be the sample covariance matrix. Consequently, we can obtain the
following result:

− T

2
log |Σ| − 1

2

T∑
t=1

(Rt − µ)′ Σ−1 (Rt − µ)

=− T

2
log
∣∣Θ−1

∣∣− 1

2

T∑
t=1

(Rt − µ)′ Θ (Rt − µ) .

(A.15)

Given the scalar y′Ay = trace (y′Ay), trace(ABC) = trace(CAB),
∑

t trace (AtB) =

trace (
∑

tAtB) and
∑

tAtB = (
∑

tAt)B, the log-likelihood function is determined by
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− T

2
log
∣∣Θ−1

∣∣− 1

2

T∑
t=1

(Rt − µ)′ Θ (Rt − µ)

=− T

2
log |Θ|−1 − 1

2

T∑
t=1

trace
(
(Rt − µ)′ Θ (Rt − µ)

)
=
T

2
log |Θ| − 1

2

T∑
t=1

trace
(
(Rt − µ) (Rt − µ)′ Θ

)
=
T

2
log |Θ| − T

2
trace (SΘ) ,

(A.16)

where S = 1
T

∑T
t=1 (Rt − µ) (Rt − µ)′ denotes the sample covariance matrix.
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B Description of the Empirical Datasets
To validate the effectiveness and robustness of our generalized Bayes-Stein framework, we
conduct multiple empirical studies over different datasets as portfolio assets. In particular,
to implement the TW-ENet approach in our generalized Bayes-Stein framework, we need a
set of commonly used economic variables as inputs (independent variables) of this method.
This appendix discusses these datasets in detail.

B.1 Asset Datasets Description

The original empirical datasets mainly comprise two types: industry portfolios and Fama-
French factor-sorted portfolios. We extract their monthly value-weighted returns from Ken
French’s website (https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/). As a result,
excess returns over the 1-month T-bill return can be obtained by data processing. Data
details are given as follows.
Industry Portfolios: We mainly use the 10 industry portfolios. It has 10 components:
Consumer Durables, Manufacturing, Energy, Hi-Tech Business Equipment, Telephone and
Television Transmission, Shops, Health, Utilities, Other.
Fama-French Factor-sorted Portfolios: Following the study of DeMiguel, Garlappi and
Uppal (2009), we also use similar Fama-French portfolios for evaluating the out-of-sample
performance of our proposed generalized Bayes-Stein framework. The following data sets
are included:

• 20 size and book-to-market portfolios and the US equity MKT: the 25 Fama-French
portfolios formed on size and book-to-market ratio excluding the five portfolios con-
taining the largest firms, the market factor (the US equity MKT).

• 20 size and book-to-market portfolios and the MKT, SMB, and HML portfolios: the
25 Fama-French portfolios formed on size and book-to-market ratio excluding the five
portfolios containing the largest firms, Fama-French three factors (the MKT, SMB,
and HML portfolios).

• 20 size and book-to-market portfolios and the MKT, SMB, and HML portfolios: the
25 Fama-French portfolios formed on size and book-to-market ratio excluding the five
portfolios containing the largest firms, Fama-French four factors (the MKT, SMB,
HML, and UMD portfolios).
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• 25 Portfolios Formed on Size and Book-to-Market: The portfolios are the intersections
of 5 portfolios formed on size (market equity, ME) and 5 on the ratio of book equity
to market equity (BE/ME).

• 100 Portfolios Formed on Size and Book-to-Market: The portfolios are the intersections
of 10 portfolios formed on size (market equity, ME) and 10 on the ratio of book equity
to market equity (BE/ME).

• 100 Portfolios Formed on Size and Operating Profitability: The portfolios are the
intersections of 10 portfolios formed on size (market equity, ME) and 10 on profitability
(OP).

• 100 Portfolios Formed on Size and Investment: The portfolios are the intersections of
10 portfolios formed on size (market equity, ME) and 10 on investment (INV).

 

B.2 Economic Variables Description

We adopt 14 commonly used economic variables of Welch and Goyal (2008) and lagged
components returns to predict expected returns of various industry portfolios and Fama-
French portfolios. For example, in 10 industry portfolios, we use the 14 economic variables
and excess returns of all ten industry components at time T as predictors to forecast the
return of one of 10 industries at time T + 1. The 14 economic variables are extracted from
Amit Goyal’s website (https://sites.google.com/view/agoyal145), given as follows:

• Dividend-price ratio (log): the difference between the log of dividends paid on the S&P
500 index and the log of prices (S&P 500 Index), where dividends are measured using
a one-year moving sum.

• Dividend yield (log): the difference between the log of dividends and the log of lagged
prices.

• Earnings-price ratio (log): the difference between the log of earnings on the S&P 500
Index and the log of prices, where earnings are measured using a one-year moving sum.

• Dividend payout ratio (log): the difference between the log of dividends and the log of
earnings on the S&P 500 Index.
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• Book-to-market ratio: ratio of book value to market value for the Dow Jones Industrial
Average.

• Default return spread: the difference between long-term corporate bond and long-term
government bond returns.

• Long-term yield: long-term government bond yield.

• Long-term return: return on long-term government bonds.

• Term spread: the difference between the long-term yield and the Treasury bill rate.

• Treasury bill rate: the interest rate on a three-month Treasury bill (secondary market).

• Default yield spread: the difference between BAA- and AAA-rated corporate bond
yields.

• Stock variance: sum of squared daily returns on the S&P 500 Index.

• Inflation: calculated from the CPI (all urban consumers).

• Net equity expansion: ratio of 12-month moving sums of net issues by NYSE-listed
stocks to the total end-of-year market capitalization of NYSE stocks.
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C Additional Results
In the main paper, for brevity, we only exhibit representative results to back up our argu-
ments. In this appendix, we provide additional results mentioned in the paper, such as an
additional investigation of the classical Bayes-Stein model on other datasets and the portfo-
lio performance of our generalized Bayes-Stein framework under other investor risk aversion
parameters, model decomposition under different expanding estimation windows.

C.1 Limitations of the Bayes-Stein Model

Section 2.2 of the main paper demonstrates the drawbacks of the traditional Bayes-Stein
model on the 10 industry portfolios. Herein we provide supplementary results on other
datasets. Since we mainly use industry portfolios and similar Fama-French factor-sorted
portfolios as assets in this paper, we offer additional results about the mean estimator on
FF21 (20 size and book-to-market portfolios and the US equity MKT) for brevity in Table
A.1, and the shrinkage factor and the inverse covariance matrix on the datasets not covered
in Section 2.2 in Tables A.2 and A.3.

According to Table A.1, we can find that the overall performance difference between the
Bayes-Stein means estimator and the sample mean is minor, and the sample means even
surpass the Bayes-Stein means estimator in some individual components (e.g., ME4 BM1),
which is consistent with our findings in the main paper. Moreover, Table A.2 reconfirms
that the shrinkage factors of the Bayes-Stein model are time-varying and asset-varying,
which implies that it is necessary to improve the classical shrinkage factor by considering
the differences between assets. Additionally, Table A.3 indicates that the Bayes-Stein model
does not enhance the inverse covariance matrix estimation, which is consistent with our
arguments in the main paper.
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Table A.1: Mean Squared Forecasting Error of the Mean Return Estimators
Table A.1 reports the out-of-sample mean squared fore-
casting error (MSFE, ×104) of the monthly sample mean
and Bayes-Stein mean estimator for FF21 (20 size and
book-to-market portfolios and the US equity MKT). As-
set name abbreviations are in line with ones of the Fama-
French website. The estimation process is based on a
20-year expanding window with the initial data period
from July 1963 to June 1983. The out-of-sample period
covers from July 1983 to December 2021.

Asset Sample Mean Bayes-Stein

SMALL LoBM 61.51 61.39
ME1 BM2 47.31 47.28
ME1 BM3 32.47 32.43
ME1 BM4 31.05 31.03
SMALL HiBM 36.77 36.73
ME2 BM1 49.49 49.45
ME2 BM2 34.20 34.21
ME2 BM3 27.68 27.69
ME2 BM4 27.33 27.33
ME2 BM5 38.52 38.49
ME3 BM1 42.13 42.14
ME3 BM2 29.31 29.34
ME3 BM3 23.99 24.00
ME3 BM4 26.22 26.24
ME3 BM5 33.51 33.53
ME4 BM1 33.78 33.82
ME4 BM2 25.37 25.42
ME4 BM3 25.18 25.20
ME4 BM4 25.09 25.11
ME4 BM5 32.94 32.96
Mkt-RF 20.01 20.00

Sum 703.85 703.79
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Table A.2: Descriptive Statistics of Shrinkage Factors
Table A.2 presents the descriptive statistics of Bayes-Stein shrinkage factors, including
max, min, mean, and standard deviation (SD), over different datasets (FF21, FF23, FF24,
FF25, FF100BM, FF100OP, FF100INV). The estimation process is based on a 20-year
expanding window with the initial data period from July 1963 to June 1983. The out-of-
sample period covers from July 1983 to December 2021.

FF21 FF23 FF24 FF25 FF100BM FF100OP FF100INV

Max 0.20 0.19 0.14 0.49 0.44 0.45 0.37
Min 0.11 0.09 0.07 0.25 0.25 0.37 0.27
Mean 0.13 0.11 0.09 0.33 0.32 0.42 0.30
SD 0.02 0.02 0.01 0.07 0.06 0.02 0.03

Table A.3: Condition Numbers of Inverse Covariance Matrix Estimates
Table A.3 exhibits the mean and standard deviation of condition numbers of the sample inverse covari-
ance matrix (S−1) and the Bayes-Stein inverse covariance matrix (Σ̂−1

BS) during the out-of-sample period
over additional datasets (FF21, FF23, FF24, FF100OP, FF100INV), to demonstrate the estimation risk
of the Bayes-Stein inverse covariance matrix. The estimation process is based on a 20-year expanding
window with the initial data period from July 1963 to June 1983. The out-of-sample period covers from
July 1983 to December 2021.

FF21 FF23 FF24 FF100OP FF100INV

Mean SD Mean SD Mean SD Mean SD Mean SD

S−1 891.44 95.95 3442.20 761.34 3469.70 766.16 2815.10 1040.40 2985.00 940.08
Σ̂−1

BS 891.53 95.98 3441.30 760.81 3469.10 765.81 2815.80 1040.80 2985.60 940.38

C.2 Portfolio Performance of Other Risk Aversion Parameters

In the main paper, we only present the results for risk aversion parameters of λ = 1, λ = 3,
and λ = 5 to represent investors who are aggressive, moderate, and conservative to risks,
respectively. Here we report additional results for λ = 2 and λ = 4. Note that portfolio
performance is measured after transaction costs with a transaction cost parameter of δ =

3× 10−7. Importantly, we are convinced that the findings in the main paper still hold after
examining the results in Table A.4.
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Table A.4: Portfolio Performance for Other Risk Aversion Parameters
Table A.4 reports the out-of-sample yearly Sharpe ratios (SRs) and certainty equivalent returns (CERs) of the
generalized Bayes-Stein framework (GBS) and the naive equal weighted scheme (1/N) under various datasets
(Ind10, FF21, FF23, FF24, FF25, FF100BM, FF100OP, and FF100INV) for other risk aversion parameters (λ = 2
and λ = 4) considering transaction costs (TCs). The results of the 20-year (the out-of-sample period covers from
July 1983 to December 2021) and 40-year (the out-of-sample period covers from July 2003 to December 2021)
expanding estimation windows are exhibited in Panel A and Panel B, respectively. The results of significance tests
of the performance differences (GBS vs 1/N) are put in the parenthesis, where *, **, and *** indicate a statistical
significance at the 10%, 5%, and 1%-level, respectively.

Panel A: SRs and CERs with TCs for a 20-year expanding estimation window

Dataset

SRs CERs

λ = 2 λ = 4 λ = 2 λ = 4

GBS 1/N GBS 1/N GBS 1/N GBS 1/N
Ind10 0.6647 0.6356 0.6559 0.6356 0.0769 0.0668 0.0531 0.0491
FF21 0.6517 (**) 0.5226 0.6543 (**) 0.5226 0.0818 (**) 0.0608 0.0535 (**) 0.0303
FF23 0.6510 (**) 0.5050 0.6459 (**) 0.5050 0.0791 (**) 0.0556 0.0521 (**) 0.0293
FF24 0.6438 (**) 0.5155 0.6543 (**) 0.5155 0.0759 (**) 0.0557 0.0533 (**) 0.0319
FF25 0.7042 (***) 0.5497 0.7035 (***) 0.5497 0.0920 (***) 0.0642 0.0618 (***) 0.0359
FF100BM 0.7072 (***) 0.3816 0.7055 (***) 0.3816 0.097 (***) 0.0362 0.0621 (***) 0.0051
FF100OP 0.6640 (**) 0.5635 0.6629 (**) 0.5635 0.0898 (***) 0.0678 0.0540 (**) 0.0375
FF100INV 0.7237 (***) 0.5470 0.7249 (***) 0.5470 0.0976 (***) 0.0647 0.0657 (***) 0.0348

Panel B: SRs and CERs with TCs for a 40-year expanding estimation window

Dataset

SRs CERs

λ = 2 λ = 4 λ = 2 λ = 4

GBS 1/N GBS 1/N GBS 1/N GBS 1/N
Ind10 0.7551 0.7518 0.7521 0.7518 0.0952 0.0825 0.0690 0.0647
FF21 0.7196 0.6238 0.7349 0.6238 0.0947 0.0801 0.0672 0.0474
FF23 0.7542 (*) 0.6049 0.7595 (*) 0.6049 0.0999 (*) 0.0738 0.0713 (*) 0.0451
FF24 0.6814 0.6124 0.6946 0.6124 0.0859 0.0725 0.0601 0.0468
FF25 0.7819 (***) 0.6322 0.7925 (***) 0.6322 0.1088 (***) 0.0801 0.0778 (***) 0.0494
FF100BM 0.8562 (***) 0.5169 0.8565 (***) 0.5169 0.1300 (***) 0.0613 0.0910 (***) 0.0273
FF100OP 0.7405 (*) 0.6552 0.7453 (*) 0.6552 0.1033 (**) 0.0855 0.0694 (*) 0.0532
FF100INV 0.8009 (**) 0.6508 0.8060 (**) 0.6508 0.1095 (**) 0.0842 0.0798 (**) 0.0525

C.3 Portfolio Performance of Model Decomposition

We divide our generalized Bayes-Stein model into two sub-models for a more comprehensive
analysis. Model 1 includes only the TW-ENet approach, while Model 2 does not. In the
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main paper, we evaluated the portfolio performance of these two models under a 20-year
expanding estimation window, considering transaction costs. We do this due to the repre-
sentativeness of this portfolio construction design. Here we give additional results, including
without transaction costs and a 40-year expanding estimation window with transaction costs,
in Tables A.5 and A.6. Results demonstrate that our generalized Bayes-Stein model incorpo-
rates the merits of these two sub-models and offers more stable and superior out-of-sample
performance than the 1/N asset allocation rule.
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Table A.5: SRs and CERs without TCs for Model Decomposition
The generalized Bayes-Stein model (GBS) is decomposed into two sub-models, one that only includes the TW-ENet approach (model 1) and another
that does not have the TW-ENet method (model 2). Table A.5 reports the out-of-sample yearly Sharpe ratios (SRs) and certainty equivalent returns
(CERs) of the two sub-models and the naive equal weighted scheme (1/N) under various datasets (Ind10, FF21, FF23, FF24, FF25, FF100BM,
FF100OP, and FF100INV) for different risk aversion parameters (λ = 1, 3, 5) without considering transaction costs (TCs), which are exhibited in
Panel A and Panel B, respectively. The results are obtained under a 20-year expanding estimation window (the out-of-sample period covers from July
1983 to December 2021). Significance tests of the performance differences (GBS-model 1 vs 1/N, GBS-model 2 vs 1/N) are put in the parenthesis,
where *, **, and *** indicate a statistical significance at the 10%, 5%, and 1%-level, respectively.

Panel A: SRs and CERs of GBS-model 1

Dataset

SRs CERs

λ = 1 λ = 3 λ = 5 λ = 1 λ = 3 λ = 5

GBS-model 1 1/N GBS-model 1 1/N GBS-model 1 1/N GBS-model 1 1/N GBS-model 1 1/N GBS-model 1 1/N
Ind10 0.6718 0.6356 0.6515 0.6356 0.6187 0.6356 0.0883 (*) 0.0756 0.0616 0.0580 0.0383 0.0403
FF21 0.6391 (**) 0.5226 0.6956 (***) 0.5226 0.7042 (**) 0.5226 0.093 (*) 0.0760 0.0719 (**) 0.0455 0.0496 (***) 0.0150
FF23 0.6349 (**) 0.5050 0.6944 (**) 0.5050 0.6981 (**) 0.5050 0.088 (*) 0.0688 0.0684 (**) 0.0425 0.0484 (**) 0.0161
FF24 0.6695 (**) 0.5155 0.7077 (**) 0.5155 0.7217 (**) 0.5155 0.0896 (**) 0.0676 0.0674 (**) 0.0438 0.0502 (**) 0.0200
FF25 0.6967 (***) 0.5497 0.7089 (***) 0.5497 0.6905 (**) 0.5497 0.1047 (***) 0.0783 0.0752 (***) 0.0500 0.0476 (***) 0.0217
FF100BM 0.7183 (***) 0.3816 0.7311 (***) 0.3816 0.7299 (***) 0.3816 0.1161 (***) 0.0518 0.0827 (***) 0.0206 0.0526 (***) -0.0105
FF100OP 0.6593 (**) 0.5635 0.6952 (***) 0.5635 0.6699 (**) 0.5635 0.1061 (***) 0.0829 0.0754 (***) 0.0526 0.0439 (**) 0.0224
FF100INV 0.7418 (***) 0.5470 0.7388 (***) 0.5470 0.7414 (***) 0.5470 0.1156 (***) 0.0796 0.0825 (***) 0.0497 0.0549 (***) 0.0198

Panel B: SRs and CERs of GBS-model 2

Dataset

SRs CERs

λ = 1 λ = 3 λ = 5 λ = 1 λ = 3 λ = 5

GBS-model 2 1/N GBS-model 2 1/N GBS-model 2 1/N GBS-model 2 1/N GBS-model 2 1/N GBS-model 2 1/N
Ind10 0.6362 0.6356 0.6385 0.6356 0.6474 0.6356 0.0790 0.0756 0.0598 0.0580 0.0417 0.0403
FF21 0.5799 (*) 0.5226 0.5832 (**) 0.5226 0.5838 (**) 0.5226 0.0913 (**) 0.0760 0.0565 (**) 0.0455 0.0235 (**) 0.0150
FF23 0.5829 (**) 0.5050 0.5876 (***) 0.5050 0.5885 (***) 0.5050 0.0919 (***) 0.0688 0.0573 (***) 0.0425 0.0244 (*) 0.0161
FF24 0.5930 (**) 0.5155 0.5927 (***) 0.5155 0.5950 (***) 0.5155 0.0941 (***) 0.0676 0.0583 (**) 0.0438 0.0259 0.0200
FF25 0.5900 0.5497 0.5904 0.5497 0.5903 (*) 0.5497 0.0932 (**) 0.0783 0.0578 0.0500 0.0252 0.0217
FF100BM 0.5852 (***) 0.3816 0.5814 (***) 0.3816 0.5777 (***) 0.3816 0.0895 (***) 0.0518 0.056 (***) 0.0206 0.0232 (***) -0.0105
FF100OP 0.5232 0.5635 0.5414 0.5635 0.5430 0.5635 0.0789 0.0829 0.0488 0.0526 0.0172 0.0224
FF100INV 0.5837 (*) 0.5470 0.5912 (**) 0.5470 0.5946 (***) 0.5470 0.0883 (**) 0.0796 0.0577 (**) 0.0497 0.0269 (**) 0.0198
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Table A.6: SRs and CERs with TCs for Model Decomposition
The generalized Bayes-Stein model (GBS) is decomposed into two sub-models, one that only includes the TW-ENet approach (model 1) and another
that does not have the TW-ENet method (model 2). Table A.6 reports the out-of-sample yearly Sharpe ratios (SRs) and certainty equivalent returns
(CERs) of the two sub-models and the naive equal weighted scheme (1/N) under various datasets (Ind10, FF21, FF23, FF24, FF25, FF100BM,
FF100OP, and FF100INV) for different risk aversion parameters (λ = 1, 3, 5) considering transaction costs (TCs), which are exhibited in Panel A
and Panel B, respectively. The results are obtained under a 40-year expanding estimation window (the out-of-sample period covers from July 2003
to December 2021). Significance tests of the performance differences (GBS-model 1 vs 1/N, GBS-model 2 vs 1/N) are put in the parenthesis, where
*, **, and *** indicate a statistical significance at the 10%, 5%, and 1%-level, respectively.

Panel A: SRs and CERs of GBS-model 1

Dataset

SRs CERs

λ = 1 λ = 3 λ = 5 λ = 1 λ = 3 λ = 5

GBS-model 1 1/N GBS-model 1 1/N GBS-model 1 1/N GBS-model 1 1/N GBS-model 1 1/N GBS-model 1 1/N
Ind10 0.7666 0.7518 0.7818 0.7518 0.7879 0.7518 0.1097 (*) 0.0915 0.0853 0.0736 0.0615 0.0558
FF21 0.7061 0.6238 0.7610 0.6238 0.7835 (*) 0.6238 0.1064 0.0965 0.0848 0.0638 0.0614 (*) 0.0311
FF23 0.7407 0.6049 0.7655 (*) 0.6049 0.7497 0.6049 0.1112 (*) 0.0882 0.0844 (*) 0.0594 0.0562 0.0307
FF24 0.6741 0.6124 0.7229 0.6124 0.7235 0.6124 0.0971 0.0854 0.0742 0.0597 0.0521 0.0339
FF25 0.7965 (***) 0.6322 0.8039 (***) 0.6322 0.7598 (*) 0.6322 0.1266 (***) 0.0955 0.0938 (***) 0.0647 0.0576 (**) 0.0340
FF100BM 0.8761 (***) 0.5169 0.8913 (***) 0.5169 0.8588 (***) 0.5169 0.1530 (***) 0.0783 0.1150 (***) 0.0443 0.0737 (***) 0.0104
FF100OP 0.7217 0.6552 0.7249 0.6552 0.7069 0.6552 0.1167 (*) 0.1016 0.0819 0.0693 0.0483 0.0370
FF100INV 0.8164 (***) 0.6508 0.8165 (***) 0.6508 0.8571 (***) 0.6508 0.1262 (**) 0.1001 0.0953 (**) 0.0683 0.0730 (***) 0.0366

Panel B: SRs and CERs of GBS-model 2

Dataset

SRs CERs

λ = 1 λ = 3 λ = 5 λ = 1 λ = 3 λ = 5

GBS-model 2 1/N GBS-model 2 1/N GBS-model 2 1/N GBS-model 2 1/N GBS-model 2 1/N GBS-model 2 1/N
Ind10 0.7814 0.7518 0.7779 0.7518 0.7794 0.7518 0.0949 0.0915 0.0772 0.0736 0.0596 0.0558
FF21 0.5791 0.6238 0.5924 0.6238 0.6027 0.6238 0.0987 0.0965 0.0585 0.0638 0.0211 0.0311
FF23 0.5627 0.6049 0.5732 0.6049 0.5838 0.6049 0.0961 0.0882 0.0545 0.0594 0.0167 0.0307
FF24 0.5657 0.6124 0.5762 0.6124 0.5880 0.6124 0.0968 0.0854 0.0551 0.0597 0.0178 0.0339
FF25 0.5714 0.6322 0.5833 0.6322 0.593 0.6322 0.0977 0.0955 0.0566 0.0647 0.0191 0.0340
FF100BM 0.6133 (*) 0.5169 0.6125 (**) 0.5169 0.6118 (***) 0.5169 0.1025 (**) 0.0783 0.0624 (**) 0.0443 0.0243 (**) 0.0104
FF100OP 0.6303 0.6552 0.6440 0.6552 0.6388 0.6552 0.1026 0.1016 0.0680 0.0693 0.0319 0.0370
FF100INV 0.6168 0.6508 0.6277 0.6508 0.6328 0.6508 0.0987 0.1001 0.0650 0.0683 0.0310 0.0366
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D Robustness Checks
In this appendix, we report the results of all robustness checks described in Section 5 about
our generalized Bayes-Stein framework, including alternative time series forecasting methods
and different portfolio construction designs.

D.1 Alternative Time-series Return Forecasting Methods

We integrate some well-established machine learning methods into our generalized Bayes-
Stein framework to examine the robustness of our proposed TW-ENet approach, including
the OLS post-LASSO approach, the combination Elastic Net (C-ENet) method, and the
random forest technique.1

To describe these methods, we consider a classical predictive regression model with a set
of candidate predictors:

rt = β0 +
D∑
d=1

βdxd,t−1 + ϵt, (A.17)

where rt is the expected excess return at time t and xd,t−1 is the dth predictor variable at
time t− 1. ϵt represents a zero-mean disturbance term. D denotes the number of predictors.

The LASSO method of Tibshirani (1996) can set numerous coefficients to zero and refine
the above function by

argmin
β0,...,βD∈R

 1

2T

T∑
t=1

(
rt − β0 −

D∑
d=1

βdxd,t−1

)2

+ ρ
D∑
d=1

|βd|

 , (A.18)

where ρ represents the regularization parameter.
Based on the LASSO-selected predictors, we further apply the traditional ordinary least

squares (OLS) regression. The whole process is called OLS post-LASSO estimation and has
been employed in previous literature to forecast the expected returns of industry assets (see,
Rapach et al., 2019).

In terms of the C-ENet approach, it aims to improve the forecast combination method by
leveraging the ability of Elastic Net to select individual forecasts (Rapach and Zhou, 2020;

1We only briefly introduce the OLS post-LASSO and C-ENet since the random forest method is very
common in forecasting literature.
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Dong et al., 2022). Denoting individual forecasts of D predictors by r̂d,t, where d = 1, . . . , D,
C-ENet can identify necessary forecast components by

argmin
θ0,...,θD∈R

1

2L

T+L∑
t=T+1

(
rt − θ0 −

D∑
d=1

θdr̂d,t

)2

+ λP, (A.19)

where

P = ρ

D∑
d=1

|θd|+
1

2
(1− ρ)

D∑
d=1

θ2d, (A.20)

the time between T +1 and T +L is the training period, θd denotes the combination weights
of individual forecasts, ρ represents a compromise between ridge (ρ = 0) and LASSO (ρ = 1),
and λ controls the overall penalty strength.

Consequently, the individual forecasts selected by (A.19) are averaged to yield the final
forecasting results.

Finally, the Sharpe ratios and certainty equivalent returns of applying different ma-
chine learning methods in our generalized Bayes-Stein framework are presented in Table
A.7. According to the results, our TW-ENet is relatively inferior to one or two of these three
Benchmark methods in some datasets. For example, in Ind10, the performance of the combi-
nation Elastic Net (C-ENet) method is best, whereas, in FF24, the OLS post-LASSO (OPL)
approach is best. Moreover, in large portfolios (FF100BM, FF100OP, and FF100INV), the
performance of random forest (RF) is comparable to our TW-ENet. However, our TW-
ENet approach’s performance is stable in all datasets, which verifies its overall robustness
over other machine learning methods. Therefore, the robustness check results prove the TE-
ENet approach’s comparable performance to other well-established methods and reflect the
flexibility of our generalized Bayes-Stein framework. As a result, this framework can easily
integrate other advanced machine learning methods.

D.2 Portfolio Performance of Other Transaction Cost Parameters

Following DeMiguel, Martín-Utrera and Nogales (2015), we apply other transaction cost
parameters (δ = 3 × 10−6 and δ = 3 × 10−8) to evaluate further the impacts of transaction
costs on our generalized Bayes-Stein framework. The results are presented in Table A.8
and A.9, respectively. Consistent with the findings in the main paper, our generalized
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Bayes-Stein framework can still provide better out-of-sample portfolio performance than
1/N, demonstrating our model’s insensitivity to transaction cost parameters.

D.3 Portfolio Performance of Other Expanding Window

Different initial expanding window lengths result in different out-of-sample periods. For
example, in this paper, the 20-year window means the out-of-sample period from July 1983
to December 2021, and the 40-year window represents the out-of-sample period from July
2003 to December 2021. To provide more evidence supporting our generalized Bayes-Stein
framework’s superiority relative to the 1/N strategy, we also apply a 30-year expanding
window (indicating an out-of-sample period from July 1993 to December 2021), shown in
Table A.10. Note that here we apply a high transaction cost parameter of δ = 3× 10−6 due
to its stringency on the asset allocation model. Likewise, our generalized Bayes-Stein model
can surpass the 1/N rule under the 30-year expanding window.

D.4 Rolling Window Estimation

We offer the empirical results based on the expanding window estimation in the main paper.
Here we provide results via a 20-year rolling window estimation, as shown in Table A.11.
Though we implement a different design, the results are consistent with the ones of the main
paper. Therefore, the performance of our generalized Bayes-Stein model is robust under
different types of estimation windows.
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Table A.7: Portfolio Performance of Different Machine Learning Methods
Table A.7 reports the out-of-sample yearly Sharpe ratios (SRs, Panel A) and certainty equivalent returns (CERs, Panel B) of
different machine learning methods for time-series return forecasting in the generalized Bayes-Stein framework, including our TW-
ENet approach, the OLS post-LASSO (OPL), the combination Elastic Net (C-ENet), and random forest (RF). The performance
metrics are measured under different risk aversion parameters (λ = 1, 3, 5) and transaction costs (TCs, a transaction cost parameter
of δ = 3× 10−7), based on a 20-year expanding window (the out-of-sample period covers from July 1983 to December 2021).

Panel A: SRs

Dataset
λ = 1 λ = 3 λ = 5

TW-ENet OPL C-ENet RF TW-ENet OPL C-ENet RF TW-ENet OPL C-ENet RF
Ind10 0.6664 0.6539 0.6935 0.5971 0.6604 0.6641 0.6736 0.5904 0.6548 0.6671 0.6697 0.5945
FF21 0.6453 0.6677 0.6041 0.6598 0.6544 0.6591 0.6027 0.6610 0.6525 0.6572 0.6030 0.6665
FF23 0.6529 0.6722 0.6006 0.6446 0.6490 0.6784 0.5985 0.6554 0.6421 0.6878 0.5988 0.6710
FF24 0.6375 0.7317 0.6091 0.7071 0.6504 0.7502 0.5999 0.7198 0.6626 0.7617 0.5975 0.7261
FF25 0.7067 0.6901 0.6155 0.6666 0.7027 0.6808 0.6102 0.6675 0.7049 0.6790 0.6078 0.6624
FF100BM 0.7096 0.6145 0.5369 0.6947 0.7057 0.6097 0.5370 0.6984 0.7065 0.6067 0.5372 0.6935
FF100OP 0.6614 0.7075 0.5538 0.6750 0.6644 0.7133 0.5611 0.6833 0.6612 0.7228 0.5653 0.6853
FF100INV 0.7242 0.7220 0.6134 0.7264 0.7240 0.7283 0.6256 0.7306 0.7259 0.7368 0.6294 0.7318

Panel B: CERs

Dataset
λ = 1 λ = 3 λ = 5

TW-ENet OPL C-ENet RF TW-ENet OPL C-ENet RF TW-ENet OPL C-ENet RF

Ind10 0.0892 0.0844 0.0906 0.0808 0.0648 0.0643 0.0663 0.0553 0.0424 0.0443 0.0446 0.0328
FF21 0.0956 0.0970 0.0938 0.1035 0.0677 0.0679 0.0599 0.0704 0.0392 0.0406 0.0278 0.0394
FF23 0.0928 0.0955 0.0932 0.0971 0.0656 0.0701 0.0592 0.0684 0.0388 0.0462 0.0270 0.0418
FF24 0.0875 0.1018 0.0945 0.1065 0.0646 0.0797 0.0594 0.0787 0.0430 0.0580 0.0271 0.0516
FF25 0.1078 0.1001 0.0950 0.1038 0.0765 0.0713 0.0611 0.0714 0.0475 0.0443 0.0293 0.0388
FF100BM 0.1152 0.0987 0.0829 0.1178 0.0793 0.0617 0.0480 0.0793 0.0453 0.0252 0.0142 0.0403
FF100OP 0.1075 0.1133 0.0859 0.1143 0.0719 0.0805 0.0525 0.0764 0.0362 0.0483 0.0196 0.0388
FF100INV 0.1138 0.1128 0.0936 0.1201 0.0816 0.0819 0.0638 0.0845 0.0498 0.0522 0.0329 0.0492
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Table A.8: SRs and CERs of the Transaction Cost Parameter of δ = 3× 10−8

Table A.8 reports the out-of-sample yearly Sharpe ratios (SRs) and certainty equivalent returns (CERs) of the generalized Bayes-Stein framework
(GBS) and the naive equal weighted scheme (1/N) under various datasets (Ind10, FF21, FF23, FF24, FF25, FF100BM, FF100OP, and FF100INV)
for different risk aversion parameters (λ = 1, 3, 5) considering transaction costs (TCs, a transaction cost parameter of δ = 3× 10−8). The results
of the 20-year (the out-of-sample period covers from July 1983 to December 2021) and 40-year (the out-of-sample period covers from July 2003
to December 2021) expanding estimation windows are exhibited in Panel A and Panel B, respectively. The results of significance tests of the
performance differences (GBS vs 1/N) are put in the parenthesis, where *, **, and *** indicate a statistical significance at the 10%, 5%, and
1%-level, respectively.

Panel A: SRs and CERs with TCs for a 20-year expanding estimation window

Dataset

SRs CERs

λ = 1 λ = 3 λ = 5 λ = 1 λ = 3 λ = 5

GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N
Ind10 0.6664 0.6356 0.6605 0.6356 0.6547 0.6356 0.0892 (*) 0.0756 0.0648 0.058 0.0424 0.0403
FF21 0.6443 (**) 0.5226 0.6537 (**) 0.5226 0.6532 (**) 0.5226 0.0954 (**) 0.0760 0.0676 (**) 0.0455 0.0393 (**) 0.0150
FF23 0.6510 (**) 0.5050 0.6478 (**) 0.5050 0.6423 (**) 0.5050 0.0928 (**) 0.0688 0.0655 (**) 0.0425 0.0388 (**) 0.0161
FF24 0.6389 (*) 0.5155 0.6468 (**) 0.5155 0.6604 (**) 0.5155 0.0878 (**) 0.0676 0.0641 (**) 0.0438 0.0426 (**) 0.0200
FF25 0.7072 (***) 0.5497 0.7057 (***) 0.5497 0.7070 (***) 0.5497 0.1077 (***) 0.0783 0.0770 (***) 0.0500 0.0479 (***) 0.0217
FF100BM 0.7072 (***) 0.3816 0.7042 (***) 0.3816 0.7060 (***) 0.3816 0.1148 (***) 0.0518 0.0791 (***) 0.0206 0.0452 (***) -0.0105
FF100OP 0.6585 (**) 0.5635 0.6616 (**) 0.5635 0.6588 (**) 0.5635 0.1069 (***) 0.0829 0.0714 (**) 0.0526 0.0357 (*) 0.0224
FF100INV 0.7244 (***) 0.5470 0.7240 (***) 0.5470 0.7261 (***) 0.5470 0.1138 (***) 0.0796 0.0816 (***) 0.0497 0.0498 (***) 0.0198

Panel B: SRs and CERs with TCs for a 40-year expanding estimation window

Dataset

SRs CERs

λ = 1 λ = 3 λ = 5 λ = 1 λ = 3 λ = 5

GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N
Ind10 0.7613 0.7518 0.7531 0.7518 0.7524 0.7518 0.1091 (*) 0.0915 0.0819 0.0736 0.0565 0.0558
FF21 0.7104 0.6238 0.7285 0.6238 0.7432 0.6238 0.1088 0.0965 0.0810 0.0638 0.0540 0.0311
FF23 0.7426 (*) 0.6049 0.7522 (*) 0.6049 0.7558 (*) 0.6049 0.1130 (*) 0.0882 0.0846 (*) 0.0594 0.0563 (*) 0.0307
FF24 0.6761 0.6124 0.6827 0.6124 0.7008 0.6124 0.0994 0.0854 0.0719 0.0597 0.0479 0.0339
FF25 0.7795 (***) 0.6322 0.7873 (***) 0.6322 0.7989 (***) 0.6322 0.1252 (***) 0.0955 0.0931 (***) 0.0647 0.0630 (***) 0.0340
FF100BM 0.8551 (***) 0.5169 0.8582 (***) 0.5169 0.8577 (***) 0.5169 0.1500 (***) 0.0783 0.1108 (***) 0.0443 0.0721 (***) 0.0104
FF100OP 0.7396 (*) 0.6552 0.7435 (*) 0.6552 0.7468 (*) 0.6552 0.1208 (**) 0.1016 0.0864 (*) 0.0693 0.0526 (*) 0.0370
FF100INV 0.8037 (**) 0.6508 0.8024 (**) 0.6508 0.8086 (***) 0.6508 0.1253 (**) 0.1001 0.0945 (**) 0.0683 0.065 (***) 0.0366
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Table A.9: SRs and CERs of the Transaction Cost Parameter of δ = 3× 10−6

Table A.9 reports the out-of-sample yearly Sharpe ratios (SRs) and certainty equivalent returns (CERs) of the generalized Bayes-Stein framework
(GBS) and the naive equal weighted scheme (1/N) under various datasets (Ind10, FF21, FF23, FF24, FF25, FF100BM, FF100OP, and FF100INV)
for different risk aversion parameters (λ = 1, 3, 5) considering transaction costs (TCs, a transaction cost parameter of δ = 3× 10−6). The results
of the 20-year (the out-of-sample period covers from July 1983 to December 2021) and 40-year (the out-of-sample period covers from July 2003
to December 2021) expanding estimation windows are exhibited in Panel A and Panel B, respectively. The results of significance tests of the
performance differences (GBS vs 1/N) are put in the parenthesis, where *, **, and *** indicate a statistical significance at the 10%, 5%, and
1%-level, respectively.

Panel A: SRs and CERs with TCs for a 20-year expanding estimation window

Dataset

SRs CERs

λ = 1 λ = 3 λ = 5 λ = 1 λ = 3 λ = 5

GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N
Ind10 0.6664 0.6356 0.6604 0.6356 0.6547 0.6356 0.0892 (*) 0.0756 0.0648 0.0580 0.0424 0.0403
FF21 0.6446 (**) 0.5226 0.6541 (**) 0.5226 0.6532 (**) 0.5226 0.0955 (**) 0.0760 0.0677 (**) 0.0455 0.0393 (**) 0.0150
FF23 0.6489 (**) 0.5050 0.6489 (**) 0.5050 0.6432 (**) 0.5050 0.0924 (**) 0.0688 0.0656 (**) 0.0425 0.0390 (**) 0.0161
FF24 0.6344 (*) 0.5155 0.6462 (**) 0.5155 0.6608 (**) 0.5155 0.0874 (**) 0.0676 0.0641 (**) 0.0438 0.0426 (**) 0.0200
FF25 0.7070 (***) 0.5497 0.7031 (***) 0.5497 0.7050 (***) 0.5497 0.1079 (***) 0.0783 0.0766 (***) 0.0500 0.0475 (***) 0.0217
FF100BM 0.7079 (***) 0.3816 0.7039 (***) 0.3816 0.7047 (***) 0.3816 0.1148 (***) 0.0518 0.079 (***) 0.0206 0.0449 (***) -0.0105
FF100OP 0.6588 (**) 0.5635 0.6620 (**) 0.5635 0.6594 (**) 0.5635 0.107 (***) 0.0829 0.0715 (**) 0.0526 0.0358 (**) 0.0224
FF100INV 0.7257 (***) 0.5470 0.7251 (***) 0.5470 0.7268 (***) 0.5470 0.114 (***) 0.0796 0.0818 (***) 0.0497 0.0500 (***) 0.0198

Panel B: SRs and CERs with TCs for a 40-year expanding estimation window

Dataset

SRs CERs

λ = 1 λ = 3 λ = 5 λ = 1 λ = 3 λ = 5

GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N
Ind10 0.7613 0.7518 0.7531 0.7518 0.7524 0.7518 0.1091 (*) 0.0915 0.0819 0.0736 0.0565 0.0558
FF21 0.7110 0.6238 0.7289 0.6238 0.7410 0.6238 0.1089 0.0965 0.0811 0.0638 0.0536 0.0311
FF23 0.7458 (*) 0.6049 0.7558 (*) 0.6049 0.7608 (*) 0.6049 0.1136 (*) 0.0882 0.0853 (*) 0.0594 0.0572 (*) 0.0307
FF24 0.6780 0.6124 0.6824 0.6124 0.7004 0.6124 0.0997 0.0854 0.0718 0.0597 0.0478 0.0339
FF25 0.7802 (***) 0.6322 0.7869 (***) 0.6322 0.7995 (***) 0.6322 0.1253 (***) 0.0955 0.0930 (***) 0.0647 0.0631 (***) 0.0340
FF100BM 0.8543 (***) 0.5169 0.8581 (***) 0.5169 0.8582 (***) 0.5169 0.1500 (***) 0.0783 0.1108 (***) 0.0443 0.0722 (***) 0.0104
FF100OP 0.7374 (*) 0.6552 0.7428 (*) 0.6552 0.7461 (*) 0.6552 0.1203 (**) 0.1016 0.0862 (*) 0.0693 0.0524 (*) 0.0370
FF100INV 0.8035 (**) 0.6508 0.8027 (**) 0.6508 0.8089 (**) 0.6508 0.1253 (**) 0.1001 0.0945 (**) 0.0683 0.065 (***) 0.0366
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Table A.10: SRs and CERs of a 30-year Expanding Window
Table A.10 reports the out-of-sample yearly Sharpe ratios (SRs) and certainty equivalent returns (CERs) of the generalized Bayes-Stein framework
(GBS) and the naive equal weighted scheme (1/N) under various datasets (Ind10, FF21, FF23, FF24, FF25, FF100BM, FF100OP, and FF100INV)
for different risk aversion parameters (λ = 1, 3, 5) considering transaction costs (TCs, a transaction cost parameter of δ = 3× 10−6). The results
are based on a 30-year expanding estimation window (the out-of-sample period covers from July 1993 to December 2021). Significance tests of
the performance differences (GBS vs 1/N) are put in the parenthesis, where *, **, and *** indicate a statistical significance at the 10%, 5%,
and 1%-level, respectively.

Dataset

SRs CERs

λ = 1 λ = 3 λ = 5 λ = 1 λ = 3 λ = 5

GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N
Ind10 0.6975 0.6685 0.6866 0.6685 0.6803 0.6685 0.0969 (**) 0.0788 0.0703 0.0618 0.0456 0.0447
FF21 0.6961 (**) 0.5749 0.7102 (**) 0.5749 0.7161 (**) 0.5749 0.1054 (*) 0.0864 0.0775 (**) 0.0548 0.0496 (**) 0.0232
FF23 0.7320 (**) 0.5597 0.7269 (**) 0.5597 0.7211 (**) 0.5597 0.1078 (**) 0.0790 0.0790 (**) 0.0516 0.0511 (**) 0.0241
FF24 0.6867 0.5725 0.7003 (*) 0.5725 0.7206 (*) 0.5725 0.0980 (*) 0.0776 0.0735 (*) 0.0529 0.0515 (*) 0.0282
FF25 0.7395 (***) 0.5919 0.7432 (***) 0.5919 0.7502 (***) 0.5919 0.1152 (***) 0.0865 0.0841 (***) 0.0573 0.0549 (***) 0.0282
FF100BM 0.7440 (***) 0.3679 0.7429 (***) 0.3679 0.7458 (***) 0.3679 0.1247 (***) 0.0500 0.0872 (***) 0.0177 0.0515 (***) -0.0146
FF100OP 0.7579 (***) 0.6230 0.7606 (***) 0.6230 0.7568 (***) 0.6230 0.1255 (***) 0.0936 0.0899 (***) 0.0631 0.0542 (**) 0.0325
FF100INV 0.7951 (***) 0.6376 0.7926 (***) 0.6376 0.7920 (***) 0.6376 0.1255 (***) 0.0958 0.0935 (***) 0.0655 0.0618 (***) 0.0352
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Table A.11: Out-of-sample Portfolio Performance of the Rolling Window
Table A.11 reports the out-of-sample yearly Sharpe ratios (SRs) and certainty equivalent returns (CERs) of the generalized Bayes-Stein framework
(GBS) and the naive equal weighted scheme (1/N) under various datasets (Ind10, FF21, FF23, FF24, FF25, FF100BM, FF100OP, and FF100INV)
for different risk aversion parameters (λ = 1, 3, 5) considering transaction costs (TCs, a transaction cost parameter of δ = 3× 10−6). The results
are based on a 20-year rolling estimation window (the out-of-sample period covers from July 1983 to December 2021). Significance tests of the
performance differences (GBS vs 1/N) are put in the parenthesis, where *, **, and *** indicate a statistical significance at the 10%, 5%, and
1%-level, respectively.

Dataset

SRs CERs

λ = 1 λ = 3 λ = 5 λ = 1 λ = 3 λ = 5

GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N GBS 1/N
Ind10 0.6713 0.6356 0.6683 0.6356 0.6657 0.6356 0.0889 (*) 0.0756 0.0654 0.0580 0.0441 0.0403
FF21 0.6467 (**) 0.5226 0.6571 (**) 0.5226 0.6543 (**) 0.5226 0.0960 (**) 0.0760 0.0682 (**) 0.0455 0.0395 (**) 0.0150
FF23 0.6530 (**) 0.5050 0.6542 (**) 0.5050 0.6467 (**) 0.5050 0.0931 (**) 0.0688 0.0664 (**) 0.0425 0.0395 (**) 0.0161
FF24 0.6301 (*) 0.5155 0.6465 (**) 0.5155 0.6585 (**) 0.5155 0.0868 (**) 0.0676 0.0641 (**) 0.0438 0.0423 (**) 0.0200
FF25 0.7111 (***) 0.5497 0.7055 (***) 0.5497 0.7084 (***) 0.5497 0.1086 (***) 0.0783 0.0770 (***) 0.0500 0.0481 (***) 0.0217
FF100BM 0.7258 (***) 0.3816 0.7233 (***) 0.3816 0.7238 (***) 0.3816 0.1176 (***) 0.0518 0.0823 (***) 0.0206 0.0487 (***) -0.0105
FF100OP 0.6618 (**) 0.5635 0.6676 (**) 0.5635 0.6664 (**) 0.5635 0.1073 (***) 0.0829 0.0725 (***) 0.0526 0.0373 (**) 0.0224
FF100INV 0.7373 (***) 0.5470 0.7351 (***) 0.5470 0.7354 (***) 0.5470 0.1156 (***) 0.0796 0.0833 (***) 0.0497 0.0518 (***) 0.0198

25



References
DeMiguel, V., Garlappi, L. and Uppal, R., 2009. Optimal versus naive diversification: How ineffi-

cient is the 1/n portfolio strategy? The review of financial studies, 22(5), pp.1915–1953.
DeMiguel, V., Martín-Utrera, A. and Nogales, F.J., 2015. Parameter uncertainty in multiperiod

portfolio optimization with transaction costs. Journal of financial and quantitative analysis,
50(6), pp.1443–1471.

Dong, X., Li, Y., Rapach, D.E. and Zhou, G., 2022. Anomalies and the expected market return.
The journal of finance, 77(1), pp.639–681.

Rapach, D.E., Strauss, J.K., Tu, J. and Zhou, G., 2019. Industry return predictability: A machine
learning approach. The journal of financial data science, 1(3), pp.9–28.

Rapach, D.E. and Zhou, G., 2020. Time-series and cross-sectional stock return forecasting: New
machine learning methods. Machine learning for asset management: New developments and
financial applications, pp.1–33.

Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of the royal statistical
society: Series b (methodological), 58(1), pp.267–288.

Welch, I. and Goyal, A., 2008. A comprehensive look at the empirical performance of equity
premium prediction. The review of financial studies, 21(4), pp.1455–1508.

26


	Main paper
	Introduction
	The Bayes-Stein Model and Its Limitations
	Description
	The James-Stein Theory
	The Bayes-Stein Model
	Graphical Representation of the Bayes-Stein Model

	Limitations of the Bayes-Stein Model
	Low Accuracy of the Mean Estimator BS
	Calibration Error of the Shrinkage Factor gBS
	Estimation Risk of the Inverse Covariance Matrix BS-1


	Generalized Bayes-Stein Framework with Machine Learning
	Overview
	Time-series Return Forecasting
	Improved Calibration of the Shrinkage Factor gBS
	Improved Estimation of the Inverse Covariance Matrix BS-1
	Gaussian Graphical Modeling of the Inverse Covariance Matrix
	A Graphical Adaptive Elastic Net Algorithm for the Inverse Covariance Matrix Estimation


	Empirical Studies
	Data and Models
	Performance Measures
	Empirical Results

	Robustness Checks
	Conclusions

	Online Supplementary Appendix
	Proof of Propositions
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4

	Description of the Empirical Datasets
	Asset Datasets Description
	Economic Variables Description

	Additional Results
	Limitations of the Bayes-Stein Model
	Portfolio Performance of Other Risk Aversion Parameters
	Portfolio Performance of Model Decomposition

	Robustness Checks
	Alternative Time-series Return Forecasting Methods
	Portfolio Performance of Other Transaction Cost Parameters
	Portfolio Performance of Other Expanding Window
	Rolling Window Estimation



